Binomial Distribution 1

2 (i	1.2 = 15p $p = 0.08Var = npq = 15 \times 0.08 \times 0.92 = 1.104$	M1		Attempt to find p using $1.2 = 15p$
	AG	A1	2	Correct answer
(ii)	$P(0, 1, 2) = (0.92)^{15} + {}^{15}C_{1}(0.08)(0.92)^{14} + {}^{15}C_{2}(0.08)^{2}(0.92)^{13} = 0.887$	M1 M1 A1	3	Binomial expression $^{15}C_xp^x(1-p)^{15-x}$ $0Correct unsimplified expression for P(0, 1, 2)Correct answer$
(iii)	$P(\text{at least 1 faulty screw}) = 1 - P(0) = 1 - (0.92)^{15}$	M1		Attempt at P(0) or 1 – P(0)
	= 0.7137	A1		Rounding to 0.71
	P(at least 1 faulty screw in 7 packets) = ${}^{8}C_{7}(0.713)^{7}(0.2863)$	M1		Binomial expression ${}^{8}C_{7}p^{7}(1-p)$ 0
	= 0.216	A1	4	Correct answer

3	(i		B1 B1	2	(Implied by P(12) with power 12) Accept 0.014
	(ii)	P(fewer than 10) = 1- P (10, 11, 12) = $1 - {}^{12}C_{10} \times (0.7)^{10}(0.3)^2 - 12 \times (0.7)^{11}(0.3)$ - $(0.7)^{12}$	M1		Binomial term ${}^{12}C_r(0.7)^r(0.3)^{12-r}$ or ${}^{12}C_r(p)^r(q)^{12-r}$, $0.99 \le p+q \le 1.00$
		= 1 - 0.2528 = 0.747	A1 A1	3	Correct unsimplified expression oe Correct answer

4 (i) $P(>1) = 1 - (0.95)^{20} - (0.95)^{19} (0.05)^{1}_{20} C_1$ = 0.264	M1 M1 A1 [3]	Binomial term 20Cx(0.05) ^x (0.95) ^{20-x} Correct unsimplified expression Correct answer
(ii) Profit 19 or 20 work = 450×10 – 480 = 4020	В1	4020 seen
Profit < 19 work = -480 Expected profit = $\frac{4020 \times (1 - 0.264) - 480 \times 0.264}{480 \times 0.264}$	M1 M1	Multiplying 4020 by their (i) or their (1 – (i)) Multiplying 480 by [1 – their (i)] and subtracting
= \$2830 (\$2832)	A1 [4]	Rounding to correct answer

Or -480 + 4500 (1 - 0.264) = 2830

5	(i	$P(0, 1, 2)$ = $(0.85)^6 + (0.15)(0.85)^5 {}_6C_1 + (0.15)^2 (0.85)^4 {}_6C_2$ = 0.953	B1 M1	[3]	0.15 and 0.85 seen Any binomial expression Σ powers = 6, Σ p = 1 Correct answer
	(ii)	$P(D) = 0.6 \times 0.1 + 0.4 \times 0.55 = 0.28$ $P(B D) = \frac{P(B \cap D)}{P(D)}$ $0.06/0.28 = 0.2143$ $P(>1) = 1 - P(0)$ $= 1 - (0.7857)^{5}$ $= 1 - 0.7078$ $= 0.701$	M1 A1 M1 A1 M1	[6]	Attempt to find P(D) 0.28 seen Using cond prob formula to find P(B D) Correct unsimplified answer Binomial expression 1 –P(0) or 1 –P(0, 1) Σ p = Correct answer accept 0.700
_			-		
6	(i	P(3m) = 4/5 (0.8) P(5m) = 1/5 (0.2)	B1		P(3m) = 4/5 or $P(5m) = 1/5$ seen or implied
		E(X) = 17/5 (3.4)	B1 M1		Correct E(X) Subtract their mean ² numerically from Σx^2 p, no extra dividing
		Var(X) = 16/25 (0.64)	A1	[4]	Correct answer

M1 A1√

M1

M1

Α1

[2]

[3]

their p

Summing two 2-factor terms

Correct answer, ft on $2 \times p \times (1 - p)$,

Mult 2 probs for 3 with 1 prob for 5

Multiplying probs for 11 by 3 or

summing 3 options

Correct final answer

(ii) $P(3, 5) + P(5, 3) = 0.8 \times 0.2 + 0.2 \times 0.8$

(iii) P(11) = P(3, 3, 5) + P(3, 5, 3) + P(5, 3, 3)

 $= (4/5 \times 4/5 \times 1/5) \times 3$

=48/125(0.384)

= 8/25 (0.32)