Binomial Distribution 3

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M1 A1	2	3 term binomial expression involving 20C _{something} and powers summing to 20 Correct final answer
(ii) $P(18, 19, 20)$ = $(0.6)^{18} (0.4)^2 {}_{20}C_2 + (0.6)^{19} (0.4)^1 {}_{21}C_1 + (0.6)^{20}$ = $0.003087 + 0.000487 + 0.00003635$	M1 A1		Summing three or 4 binomial expressions One correct unsimplified expression allow 0.4 0.6 muddle
= 0.00361	A1		Correct answer
OR using normal approx N(12,4.8) $z = \frac{17.5 - 12}{\sqrt{4.8}}$	М1		Standardising, cc 16.5 or 17.5, their mean, $\sqrt{\text{ (their var)}}$
= 2.51	A1		2.51 seen
Prob = 1 - 0.9940 = 0.0060	A1	3	0.0060 seen must be 0.0060
(iii) $\mu = 150 \times 0.60 = 90$ $\sigma^2 = 150 \times 0.60 \times 0.40 = 36$ P(88 < X < 97)	В1		For seeing 90 and 36
$= \Phi\left(\frac{97.5 - 90}{6}\right) - \Phi\left(\frac{87.5 - 90}{6}\right)$	M1		For standardising, with or without cc, must have sq rt on denom
$=\Phi(1.25)-\Phi(-0.4166)$	M1		one continuity correction 97.5 or 96.5 or 87.5 or 88.5
= 0.8944 - (1 - 0.6616)	A1		0.8944 or 0.6616 or 0.3384 or 0.3944 or 0.1616 seen
= 0.556	M1		subtracting a probability from their standardised 97 prob
	A1	6	correct answer

2 (i) P(no orange) = $(2/3)^5$ or 0.132 or 32/243	B1	1	For correct final answer either as a decimal or a fraction
(ii) P(2 end in 6) = $(1/10)^2 \times (9/10)^3 \times {}_5C_2$	B1 M1		For using $(1/10)^k$ $k>1$ For using a binomial expression with their $1/10$ or seeing some $p^2 * (1-p)^3$
= 0.0729	A1	3	For correct answer
(iii) P(2 orange end in 6) = $(1/30)^2 \times (29/30)^3 \times {}_5C_2$	M1		For their (1/10)/3 seen
= 0.0100 accept 0.01	A1	2	For correct answer
(iv) $n = 5, p = 1/3,$ mean = 5/3, variance = 10/9	Bl Bl ft	2	For recognising $n=5$, $p=1/3$ For correct mean and variance, fit their n and p , $p<1$

3 (i)	constant p, independent trials, fixed number of trials, only two outcomes	В1		For an option
		В1	2	For a second option
(ii)	$P(X<4) = 0.72^{14} + {}_{14}C_1 \times 0.28 \times 0.72^{13} + {}_{14}C_2 \times 0.28^2 \times 0.72^{12} + {}_{14}C_3 \times 0.28^3 \times 0.72^{11}$	M1		For adding with some C in P(0 + 1 + 2 + 3) or P(1 + 2 + 3) or P(0 + 1 + 2 + 3 + 4) or P(1 + 2 + 3 + 4)
		М1		For 0.28 and 0.72 to powers which sum to 14
				Need 2 or more terms
	(= 0.0101 + 0.0548 + 0.1385 + 0.2154)	A1		For completely correct unsimplified form
	= 0.419	A 1	4	For correct final answer
				NB 0.418 is A0 if PA # 1 or A1 if PA # 2

(iii)	μ=50 x 0.28 (= 14)	В1		For 14 and 10.08 seen, can be implied
	σ^2 = 50 x 0.28 x 0.72 (=10.08)	M1		For standardising with or without cc, must have sq root
	P(more than 18) = 1 - $\Phi\left(\frac{18.5 - 14}{\sqrt{10.08}}\right)$	M1		For continuity correction 17.5 or 18.5 AND a final answer < 0.5
	= 1 - Φ(1.417)			
	= 1 – 0.9218 or 0.9217			
	= 0.0782 or 0.0783	A1	4	For correct answer
				NB 0.078 is A0 if RE # 1 or A1 if RE # 2

$ \begin{array}{c} 4 (i) (0.95)^5 \\ = 0.774 \end{array} $	M1 A1	2	For 0.95 seen, can be implied For correct final answer
(ii) $(0.95)^4 \times (0.05)^1 \times {}_5C_1$	M1		For any binomial calculation with 3 terms, powers summing to 5
= 0.204	A1	2	For correct answer
(iii) $(0.95)^2 \times (0.05)$	M1		For no Ps, no Cs, and only 3 terms of type $p^2(1-p)$
= 0.0451(361/8000)	A1	2	For correct answer

5 (i) P(equal) = $(0.25)^5 \times (0.75)^5 \times_{10} C_5$ = 0.0584	M1 A1	2	For $(0.25)^5 \times (0.75)^5$ must be 0.25, 0.75 For correct answer. A0 if subsequently doubled
(ii) $(0.0584)^1 \times (0.9416)^7 \times {}_{8}C_1$ = 0.307	M1 A1ft	2	For (their(a)) ¹ × (1 - their(a)) ⁷ × ₈ C ₁ For correct answer from their ans to (i) Accept anything from 0.304 to 0.307 for the ft if they have lost the A1 in (i) from PA
(iii) $\mu = 120 \times 0.25 = 30$, $\sigma^2 = 30 \times 0.75 = 22.5$	M1 M1		For both mean and variance correct from any sensible p For correct standardisation with or without cc
$P(X < 35) = \Phi\left(\frac{34.5 - 30}{\sqrt{22.5}}\right) = \Phi(0.949)$	В1		For correct use of continuity correction 34.5
= 0.829	M1		For use of tables based on their z value either end NB can't get if z is too large or too small For correct answer

(i	$P(5, 6, 7) = {}^{8}C_{5}(0.68)^{5}(0.32)^{3} + {}^{8}C_{6}(0.68)^{6}(0.32)^{2} + {}^{8}C_{7}(0.68)^{7}(0.32)$ $= 0.722$	M1 M1 A1 A1 [4]	Binomial term ${}^8C_x p^x (1-p)^{8-x}$ seen $0Summing 3 binomial termsCorrect unsimplified answerCorrect answer$
(ii)	(ii) $np = 340, npq = 108.8$ $P(x > 337) = P\left(z > \frac{337.5 - 340}{\sqrt{108.8}}\right)$	B1 M1 M1	Correct (unsimplified) mean and var standardising with sq rt must have used 500 cc either 337.5 or 336.5
	= P(z > -0.2396) $= 0.595$	M1 A1 [5]	correct area (> 0.5) must have used 500 correct answer
(iii)	np(340) > 5 and $nq(160) > 5$	B1 [1]	must have both or at least the smaller, need numerical justification