Normal Distribution 1

1	(i	$z_1 = \frac{70 - 66.4}{5.6} = 0.6429$	M1		Standardising one variable, no cc, no sq rt
		$z_2 = \frac{72.5 - 66.4}{5.6} = 1.089$	M1		Correct area $\Phi_2 - \Phi_1$
		$\Phi(1.089) - \Phi(0.643) = 0.8620 - 0.7399$	A1		Correct answer rounding to 0.12
		$= 0.1221$ $0.1221 \times 250 = 30.5$	M1		Mult by 250
		30 or 31 sheep	Alft	5	Correct answer ft their 0.1221
	(ii)	66.4 - 59.2 = 7.2 66.4 + 7.2 = 73.6	M1 A1	2	Subt from 66.4 Correct answer
				-	
	(iii)	z = 0.674	B1		± 0.674 or 0.675 seen
		$\frac{67.5 - \mu}{4.92} = 0.674$	M1		Standardising with a z-value no cc no sq rt
		$\mu = 64.2$	A1	3	Correct answer

						V
2	(a	(i)	$P(x < 8) = P\left(z < \frac{8 - 7.15}{0.88}\right)$	M1		Standardising \pm , no cc no sq rt no sq
			$=\Phi(0.9659)$	150000		2000
			= 0.833	A1	2	Correct answer
		(ii)	z = 0.674	В1		Accept ± 0.674 or 0.675 only
			$\frac{q - 7.15}{0.88} = 0.674$	M1		Standardised eqn = \pm their z-value, allow sq or sq rt if already penalised in (i)
			q = 7.74	A1	3	Correct answer
	(b)	P(Y	$(z > 4\mu) = P(z > \left(\frac{4\mu - \mu}{(3\mu/2)}\right)) = P(z > 2)$	M1		Standardising no sq rt, no cc, no sq, one variable
			-0.9772	A1		$z = \pm 2$ seen
		= 0.	.0228	Al	3	correct ans SR B1 if made-up values used and 0.0228 obtained
						1

$3 z = -2.326$ $\frac{250 - 260}{2} = -2.326$	B1	± 2.325 to ± 2.33 seen
${\sigma} = -2.326$	M1	Standardising and = or < their z , no cc, sq, sq rt
$\sigma = 4.30$	A1 3	Correct ans

4	(i	$P(<1.2)=P\left(z<\frac{1.2-1.9}{0.55}\right)=P(z<-1.2727)$ = 1-\Phi(1.273)=1-0.8986	M1	Standardising for wt 1.2 or 2.5, no cc, sq, sq rt May be awarded in (ii) if not attempted in (i) Accept 0.102
		= 0.1014	A1	First correct proportion seen
		$P(>2.5)=P\left(z<\frac{2.5-1.9}{0.55}\right)=P(z>1.0909)$		
		$= 1 - \Phi(1.0909) = 1 - 0.8623$	A1	Second correct proportion seen
		= 0.138		
		$P(1.2 \le wt \le 2.5) = 1 - 0.101 - 0.138$	M1	Third proportion 1 – their previous 2
		= 0.761	A1√ 5	proportions or correct attempt for remaining proportion
	(ii)	P(x > k) = 0.8 + 0.1377 = 0.9377	M1	Valid method to obtain $P(x > k)$ or $P(x < k)$
	` ′	z = -1.536	A1	± 1.536 seen accept 3sf rounding to 1.53 or
		k _ 1 9	~	1.54
		$-1.536 = \frac{k - 1.9}{0.55}$	M1	Attempt to solve equation with their 'correct' area z value, k, 1.9 and 0.55
		k=1.06	A1 4	Correct answer or rounding to 1.05

5	(i	z = -1.406	В1			Rounding to ±1.41 seen
		$\frac{c-14.2}{3.6} = -1.406$	M	M1 A1		Standardising allow sq rt no cc
		c = 9.14	A			Correct answer
	(ii)	$P\left(\frac{15-14.2}{3.6}\right) < z < \left(\frac{16-14.2}{3.6}\right)$	М	[1		2 attempts at standardising no cc no sq rt
		$= \Phi(0.5) - \Phi(0.222)$	M	[1		Subt two Φs (indep mark)
		= 0.6915 - 0.5879 $= 0.1036$	A	1		Needn't be entirely accurate, rounding to 0.10
		P(at least 2) = 1 - P(0, 1) = 1 - $(0.8964)^7$ - $(0.8964)^6$ $(0.1036)_7$ C ₁	M	[1		Binomial term with ${}_{7}C_{t}p^{r}(1-p)^{7-r}$ seen $r \neq 0$ any $p < 1$
		= 1 - 0.8413	M	[1		1 - P(0), 1 - P(1), 1 - P(0, 1) seen their p
		= 0.159	A	1	6	Correct answer accept 3sf rounding to 0.16

6 $P(x < -2.4) = P\left(z < \frac{-2.4 - 1.5}{3.2}\right)$	1	М1		Standardising no cc can have sq		
= P(z < -1.219) $= 1 - 0.8886$	1	М1		Correct area, i.e. < 0.5		
= 1 - 0.8886 = 0.111	1	A 1	[3]	Correct answer rounding to 0.111		
7 $P(13.6 < X < 14.8) = P\left(\frac{13.6 - 14}{0.52} < z < \frac{14.8 - 14}{0.52}\right)$		М1		Standardising 1 expression, no cc, no sq rt, no sq, ±, mean on num.		
= P(-0.7692 < z < 1.538)	M1		ı	$+\Phi 2 - 1$ (indep) oe		
$= \Phi(1.538) - [1 - \Phi(0.7692)]$			$(\Phi 2 - \Phi 1 \text{ if cc used})$			
= 0.9380 - [1 - 0.7791] = 0.7171	A1	Al		Correct probability rounding to 0.72 here		
2	M1		Binomial expression 10C8 p^8q^2 , $\Sigma p + q = 1$,			
$P(8) = (0.7171)^8 (0.2829)^2_{10} C_8$			any	-		
	A1	5	Corr	rect answer (rounding to 0.252)		
= 0.252						