Normal Distribution 2

1 (a	P($X < q + 82$) = 0.72 z = 0.583 $\frac{\pm q}{7.4}$ or $\frac{\pm 2q}{7.4}$ = z or probabilty (o.e.) q = 4.31	M1 M1	3	Rounding to \pm 0.58 or \pm 0.15 seen Standardising, no cc, no sq, no sq rt correct answer		
(b	(b) $\frac{0.5\mu - \mu}{\sigma} = \frac{\pm 0.5\mu}{\sigma}$ $\frac{0.2\sigma^2}{\sigma} = -0.2\sigma = -0.580$			ardising attempt some μ/σ cc, sq rt, sq e implied 80 seen (accept ± 0.58) tuting to eliminate μ or σ , arriving at rical solution, any z value or probability – pendent		
	$\sigma = 2.90$ $\mu = 3.36$	A1	4	both a	th answers correct, accept 2.9	
2 (i)	z = -1.036 = $\frac{73 - 75}{\sigma}$ $\sigma = 1.93$		B1 M1 A1	[3]	\pm correct z value accept ± 1.037 Equation with 73, 75, σ and a z value Rounding to correct answer	
(ii	ii) $P(>77) = 0.15$ P(<3) = P(0, 1, 2) $= (0.85)^8 + {}_{9}C_{1}(0.15)(0.85)^7 + {}_{9}C_{2}(0.15)^2$	(0.85) ⁶	M1 M1		Prob rounding to 0.15 and 0.85 ${}_{8}C_{x}p^{x}(1-p)^{8-x}$ seen any p , 0< p <1	

		- 0.073	l Ai	[3	Correct answer
3	(i	$z_1 = \frac{12 - 6.4}{5.2} = 1.077$	M1		Standardising, can be all in thousands, no mix, no cc no sq rt no sq
		$z_2 = \frac{10 - 6.4}{5.2} = 0.692$	M1		$\Phi_2 - \Phi_1$, Φ_2 must be $> \Phi_1$
		$\Phi(z_1) - \Phi(z_2) = 0.8593 - 0.7556$ = 0.104	A1	[3]	Correct answer
	(ii)	P(loss) = P($z < \frac{0-6.4}{5.2}$) = P($z < -1.231$) = 1 - 0.8909	M1		Standardising using $x = 0$, accept $\frac{0.5 - 6.4}{5.2}$
		= 0.109	A1		Correct prob
		$P(1) = (0.1091)^{1}(0.8909)^{3} \times 4C1$	M1		Binomial term ${}_{4}C_{x}p^{x}(1-p)^{4-x}$ any $p \ x \neq 0$
		= 0.309 or 0.308	A1	[4]	Correct answer

4 (i $P(9) = P(1,4,4) \times 3 + P(2,3,4) \times 6 + P(3,3,3)$ = $10/64 (5/32) (0.156) AG$	M1 M1 A1	[3]	Listing at least 2 different options Multiplying P(4,3,2) by 6 or P(1,4,4) by 3 Correct answer must see numerical justification
(ii) probs 1/64, 3/64, 6/64, 10/64, 12/64, 12/64, 10/64, 6/64, 3/64, 1/64.	B1 B1 B1	[3]	3 or more additional correct probs 5 or more correct All correct
(iii) $P(S) = 6/64(3/32)$ $P(R \cap S) = 3/64, \neq 15/1024 \text{ ie } P(R) \times P(S)$ $OR P(R S) = \frac{3/64}{6/64} = 1/2, \neq 10/64 \text{ ie } P(R)$	M1 A1 B1		An attempt at $P(S)$ 4,4,1 or 4,2,2 Correct $P(S)$ Correct $P(R \cap S)$ in either intersection or cond prob cases comparing their $P(R \cap S)$ with their $P(R) \times P(S)$ or their $P(R S)$ with their $P(R)$ need
Not independent	A1ft	[5]	numerical vals correct conclusion ft wrong $P(S)$ or $P(R \cap S)$ only

`	$\frac{4.5-82}{\sqrt{126}}$ $\Phi \left[\frac{83.5-82}{\sqrt{126}} \right]$	M1		Standardising using 83.5 or 84.5, must have square root
$=\Phi(0$	$(0.1336) - \Phi = (0.1336)$	M1		Subtracting two probabilities, both > 0.5 or
= 0.58	83 - 0.5533			both < 0.5
= 0.03	50	A1	3	Correct answer
(ii) P(x >	$(87) = 1 - \Phi \left(\frac{87 - 82}{\sqrt{126}} \right) = 1 - \Phi$	M1		Standardising, no cc, must have square root
	= 1 - 0.6718 = 0.3282	A1		Correct probability
P(0, 1	$= (0.6718)^5 + {}_5C_1(0.3282)$ $(0.6718)^4$	M1		Any binomial term of form ${}_{5}C_{x}p^{x}(1-p)^{5-x}, x\neq 0$
	= 0.471	A1	4	Correct answer
(iii) P(x <	87) = 0.6718	M1		Finding $P(x < 87)$, value > 0.5
, , ,	k = 0.9718	M1		Adding 0.3 to their 0.6718 or equivalent
,	908 or 1.909	A1		Correct z
	$=\pm\frac{k-82}{\sqrt{126}}$	MI		Equation with k , 82 or 81.5 or 82.5, $\sqrt{126}$, and a z -value
k = 10)3	A1	5	Correct answer rounding to 103