Normal Distribution 3

		1	
1 (i $z = 1.882$ or 1.881	B1	±1.882 or ±1.881 seen	
$1.882 = (32 - 20) / \sigma$	M1	Equation using their z (must be a z-value) 32, 20 and s	
σ = 6.38	A1 [3]	Correct answer	
(ii) $P(x > 13) = P\left(z > \frac{13 - 20}{6.376}\right)$	M1	Standardising	
= P(z > -1.0978)	M1	Correct area > 0.5	
= 0.864	A1 [3]	Correct answer	
(iii) $P(\text{at least 2}) = 1 - P(0, 1)$	M1	Using 0.03 and 0.97 or 0.06 and 0.94 in a binomial expression powers summing to 7	
$= 1 - (0.97)^7 - (0.03)(0.97)^6{}_7C_1$	M1	Correct unsimplified binomial expansion	
= 0.0171	A1 [3]	Correct answer	

2	(i	$z_1 = \frac{12 - 8}{\sqrt{24}} = 0.816 \ \Phi_1(0.816) = 0.7926$	M1		Standardising any one, no sq rt no cc
		$z_2 = \frac{7-8}{\sqrt{24}} = -0.204 \Phi_2(-0.204) = 1 - 0.5808$	M1		Correct area $\Phi_1 + \Phi_2 - 1$
		Prob = 0.7926 - (1 - 0.5808) = 0.373	A1	[3]	Correct answer
	(ii)	$z = \frac{0 - \mu}{2\mu} = -0.5$ $P(z < -0.5) = 1 - 0.6915$	M1		Standardising, no cc no sq rt, one variable
		= 0.309 or 30.9%	A1	[2]	Correct answer oe
	(iii)	$z = \frac{3\mu - \mu}{2\mu} = 1$	M1		Standardising and eliminating μ
	(111)	2μ P(z > 1) = 1 - 0.8413 = 0.1587 70 × 0.1587 = 11.1	M1 A1	[3]	Subt from 1 and multiplying by 70 Correct answer accept 11 or 12
	(iv)	z = 1.45	B1		± 1.45 seen
		$1.45 = \frac{6-\mu}{2\mu}$	M1		Solving for μ with 6, 2 μ , μ and their z
		$\mu = 1.54$	A1	[3]	Correct answer

3 (i $z = 0.38$	B1	$\pm 0.38(0)$ seen or implied
$\pm \frac{25 - \mu}{\mu/3} = 0.38$	M1	Standardising attempt resulting in $z =$ some μ/σ /both, no continuity correction Substituting to eliminate μ or σ and attempt to solve linear equation
$\mu = 22.2, \ \sigma = 7.40$	A1 [4	Both correct
(ii) $P(4) = {}^{6}C_{4}(0.352)^{4}(0.648)^{2}$	M1	${}^{6}C_{r} \times (p)^{r} \times (1-p)^{6-r}, r=2 \text{ or } 4$
= 0.0967	A1 [2	Correct answer

4 (i	P(X > 20) = P(z > -6.4/3.7) = $P(z > -1.730)$	M1	Standardising no cc no sq rt
	= 0.9582	A1	Prob rounding to 0.958
	Number of students = 335 or 336	A1ft [3]	Correct answer ft their prob, must be integer
(ii)	P(very slow) = 0.05	B1	0.05 or 0.95 seen
	$P(0, 1, 2) = (0.95)^8 + {}^8C_1(0.05)^1(0.95)^7 + {}^8C_2(0.05)^2(0.95)^6$	М1	Binomial term with ${}^{8}C_{r}p^{r}(1-p)^{8-r}$ seen any p
	= 0.6634 + 0.2793 + 0.0515	M1	Correct expression for P(0, 1, 2), p close to 0.05
	= 0.994	A1 [4]	Answer rounding to 0.994

5 (i Zotoc:
$$z = \frac{367 - 320}{21.6} = 2.176$$
Ganmor: $z = \frac{367 - 350}{7.5} = 2.267$

P(Zotoc) = 0.985

P(Ganmor) = 0.988

A1 Correct answer

A1 Correct answer

[3]

(ii) $z = 0.23$
 $0.23 = \frac{x - 320}{21.6}$

B1 ± 0.23 seen

Standardising either car's fuel, no cc, no sq rt, no sq

M1ind

[4]

A1

320 + d - 320 i.e. just d on num

Correct answer, -4.97 gets A0

x = 324.968

d = 4.97