Complex Numbers MS 1

1 (i) Substitute
$$z = 1 + i$$
 and obtain $w = \frac{1+2i}{1+i}$ B1

- EITHER: Multiply numerator and denominator by the conjugate of the denominator, or equivalent
 - Simplify numerator to 3 + i or denominator to 2 A1

M1

- Obtain final answer $\frac{3}{2} + \frac{1}{2}i$, or equivalent
- OR: Obtain two equations in x and y, and solve for x or for y M1
 - Obtain $x = \frac{3}{2}$ or $y = \frac{1}{2}$, or equivalent
 - Obtain final answer $\frac{3}{2} + \frac{1}{2}i$, or equivalent A1 [4]
- (ii) EITHER: Substitute w = z and obtain a 3-term quadratic equation in z,

e.g.
$$iz^2 + z - i = 0$$
 B1

Solve a 3-term quadratic for z or substitute z = x + iy and use a correct

method to solve for x and y

M1

Substitute and a bit single compact constitutions in a and a bit constitution.

OR: Substitute w = x + iy and obtain two correct equations in x and y by equating real and imaginary parts

real and imaginary parts

Solve for x and y

M1

Obtain a correct solution in any form, e.g. $z = \frac{-1 \pm \sqrt{3} i}{2i}$ A1

Obtain final answer
$$-\frac{\sqrt{3}}{2} + \frac{1}{2}i$$
 A1 [4]

2 (i) State or imply iw = -3 + 5i B1

Carry out multiplication by
$$\frac{4-i}{4-i}$$
 M1

Obtain final answer
$$-\frac{7}{17} + \frac{23}{17}i$$
 or equivalent A1 [3]

(ii) Multiply w by z to obtain 17 +17i B1

State
$$\arg w = \tan^{-1} \frac{3}{5}$$
 or $\arg z = \tan^{-1} \frac{1}{4}$

State
$$\arg wz = \arg w + \arg z$$
 M1

Confirm given result
$$\tan^{-1} \frac{3}{5} + \tan^{-1} \frac{1}{4} = \frac{1}{4}\pi$$
 legitimately A1 [4]

3	(i)	Show u in a relatively correct position	B1	
		Show u^* in a relatively correct position	B1	
		Show $u^* - u$ in a relatively correct position	B1	
		State or imply that OABC is a parallelogram	B1	[4]
	(ii)	EITHER: Substitute for u and multiply numerator and denominator by $3 + i$, or equivalent	M1	
		Simplify the numerator to 8 + 6i or the denominator to 10	A1	
		Obtain final answer $\frac{4}{5} + \frac{3}{5}i$, or equivalent	A1	
		OR: Substitute for u , obtain two equations in x and y and solve for x or for y	M1	
		Obtain $x = \frac{4}{5}$ or $y = \frac{3}{5}$, or equivalent	A1	
		Obtain final answer $\frac{4}{5} + \frac{3}{5}i$, or equivalent	A1	[3]
	(iii)	State or imply $arg(u^*/u) = tan^{-1}(\frac{3}{4})$	B 1	
		Substitute exact arguments in $\arg(u^*/u) = \arg u^* - \arg u$	M1	

A1

[3]

Fully justify the given statement using exact values

		_			
4	(a)	EITHER:	Use quadratic formula to solve for w	M1	
			Use $i^2 = -1$	M1	
			Obtain one of the answers $w = \frac{1}{2i+1}$ and $w = -\frac{5}{2i+1}$	Al	
			Multiply numerator and denominator of an answer by -2i + 1, or equivalent	M1	
			Obtain final answers $\frac{1}{5} - \frac{2}{5}i$ and $-1 + 2i$	Al	
		OR1:	Multiply the equation by 1 – 2i	М1	
			Use $i^2 = -1$	M1	
			Obtain $5w^{2} + 4w(1-2i) - (1-2i)^{2} = 0$, or equivalent	Al	
			Use quadratic formula or factorise to solve for w	M1	
			Obtain final answers $\frac{1}{5} - \frac{2}{5}i$ and $-1 + 2i$	Al	
		OR2:	Substitute $w = x + iy$ and form equations for real and imaginary parts	М1	
			Use $i^2 = -1$	M1	
			Obtain $(x^2 - y^2) - 4xy + 4x - 1 = 0$ and $2(x^2 - y^2) + 2xy + 4y + 2 = 0$ o.e.	Al	
			Form equation in x only or y only and solve	M1	
			Obtain final answers $\frac{1}{5} - \frac{2}{5}i$ and $-1 + 2i$	A1	[5]
	(b)	Show a circle with centre 1 + i		B1	
			rcle with radius 2	B1	
		Show half	Thine arg $z = \frac{1}{4}\pi$	B1	
		Show half	-line arg $z = -\frac{1}{4}\pi$	B1	
		Shade the	correct region	B1	[5]

5	(i)		State modulus $2\sqrt{2}$, or equivalent State argument $-\frac{1}{3}\pi$ (or -60°)		[2]
	(ii)	(a)	State answer $3\sqrt{2} + \sqrt{6}$ i	B1	
		(b)	EITHER: Substitute for z and multiply numerator and denominator by conjugate of iz Simplify the numerator to $4\sqrt{3} + 4i$ or the denominator to 8 Obtain final answer $\frac{1}{2}\sqrt{3} + \frac{1}{2}i$ OR: Substitute for z, obtain two equations in x and y and solve for x or for y Obtain $x = \frac{1}{2}\sqrt{3}$ or $y = \frac{1}{2}$ Obtain final answer $\frac{1}{2}\sqrt{3} + \frac{1}{2}i$	M1 A1 A1 M1 A1	[4]
	(iii)		Show points A and B in relatively correct positions Carry out a complete method for finding angle AOB , e.g. calculate the argument of $\frac{z^*}{iz}$ Obtain the given answer	B1 M1 A1	[3]