Complex Numbers QP 1

1 The complex numbers w and z satisfy the relation

$$w = \frac{z + i}{iz + 2}.$$

- (i) Given that z = 1 + i, find w, giving your answer in the form x + iy, where x and y are real. [4]
- (ii) Given instead that w = z and the real part of z is negative, find z, giving your answer in the form x + iy, where x and y are real. [4]
- The complex numbers w and z are defined by w = 5 + 3i and z = 4 + i.
 - (i) Express $\frac{iw}{z}$ in the form x + iy, showing all your working and giving the exact values of x and y.
 - (ii) Find wz and hence, by considering arguments, show that

$$\tan^{-1}\left(\frac{3}{5}\right) + \tan^{-1}\left(\frac{1}{4}\right) = \frac{1}{4}\pi.$$
 [4]

- 3 The complex number 3 i is denoted by u. Its complex conjugate is denoted by u*.
 - (i) On an Argand diagram with origin O, show the points A, B and C representing the complex numbers u, u* and u* - u respectively. What type of quadrilateral is OABC? [4]
 - (ii) Showing your working and without using a calculator, express $\frac{u^*}{u}$ in the form x + iy, where x and y are real. [3]
 - (iii) By considering the argument of $\frac{u^*}{u}$, prove that

$$\tan^{-1}(\frac{3}{4}) = 2\tan^{-1}(\frac{1}{3}).$$
 [3]

- 4 (a) Solve the equation $(1 + 2i)w^2 + 4w (1 2i) = 0$, giving your answers in the form x + iy, where x and y are real. [5]
 - (b) On a sketch of an Argand diagram, shade the region whose points represent complex numbers satisfying the inequalities |z − 1 − i| ≤ 2 and −¹/₄π ≤ arg z ≤ ¹/₄π. [5]

- The complex number z is defined by $z = (\sqrt{2}) (\sqrt{6})i$. The complex conjugate of z is denoted by z^* .
 - (i) Find the modulus and argument of z. [2]
 - (ii) Express each of the following in the form x + iy, where x and y are real and exact:
 - (a) $z + 2z^*$;
 - (b) $\frac{z^*}{iz}$. [4]
 - (iii) On a sketch of an Argand diagram with origin O, show the points A and B representing the complex numbers z^* and iz respectively. Prove that angle AOB is equal to $\frac{1}{6}\pi$. [3]