Vectors MS 1

1	(i)	EITHER:	Find \overrightarrow{AP} (or \overrightarrow{PA}) for a point P on l with parameter λ ,		
			e.g. $\mathbf{i} - 17\mathbf{j} + 4\mathbf{k} + \lambda(-2\mathbf{i} + \mathbf{j} - 2\mathbf{k})$	B1	
			Calculate scalar product of \overrightarrow{AP} and a direction vector for l and equate to zero	M1	
			Solve and obtain $\lambda = 3$	A1	
			Carry out a complete method for finding the length of AP	M1 A1	
		OB1.	Obtain the given answer 15 correctly		
		OR1:	Calling $(4, -9, 9)$ B, state BA (or AB) in component form, e.g. $-\mathbf{i} + 17\mathbf{j} - 4\mathbf{k}$	В1	
			Calculate vector product of \overrightarrow{BA} and a direction vector for l ,	141	
			e.g. $(-i + 17j - 4k) \times (-2i + j - 2k)$	M1	
			Obtain correct answer, e.g. $-30i + 6j + 33k$	A1	
			Divide the modulus of the product by that of the direction vector	M1 A1	
		0.00	Obtain the given answer correctly		
		OR2:	State \overline{BA} (or \overline{AB}) in component form	B1	
			Use a scalar product to find the projection of BA (or AB) on I	M1	
			Obtain correct answer in any form, e.g. $\frac{27}{\sqrt{9}}$	A1	
			Use Pythagoras to find the perpendicular	M1	
			Obtain the given answer correctly	A1	
		OR3:	State \overline{BA} (or \overline{AB}) in component form	B 1	
			Use a scalar product to find the cosine of ABP	M1	
			Obtain correct answer in any form, e.g. $\frac{27}{\sqrt{9.\sqrt{306}}}$	A1	
			Use trig. to find the perpendicular	M1	
			Obtain the given answer correctly	A1	
		OR4:	State \overline{BA} (or \overline{AB}) in component form Find a second point C on l and use the cosine rule in triangle ABC to find the	B1	
			cosine of angle A , B , or C , or use a vector product to find the area of ABC	M1	
			Obtain correct answer in any form	A1	
			Use trig. or area formula to find the perpendicular	M1	
			Obtain the given answer correctly	A1	
		OR5:	State correct \overline{AP} (or \overline{PA}) for a point P on l with parameter λ in any form	B1	
			Use correct method to express AP^2 (or AP) in terms of λ Obtain a correct expression in any form,	M1	
			e.g. $(1-2\lambda)^2 + (-17+\lambda)^2 + (4-2\lambda)^2$	A1	
			Carry out a method for finding its minimum (using calculus, algebra		
			or Pythagoras)	M1	
			Obtain the given answer correctly	A1	[5]

(i) State at least two of the equations $1 + \lambda = a + \mu$, $4 = 2 + 2\mu$, $-2 + 3\lambda = -2 + 3a\mu$ B12 M1Solve for λ or for μ Obtain $\lambda = a$ (or $\lambda = a + \mu - 1$) and $\mu = 1$ A1 Confirm values satisfy third equation A1 [4] (ii) State or imply point of intersection is (a+1, 4, 3a-2) B1Use correct method for the modulus of the position vector and equate to 9, following their M*1 point of intersection $(a^2 - a - 6 = 0)$ Solve a three-term quadratic equation in a DM*1 Obtain -2 and 3

- 3 Use correct method to form a vector equation for AB M1Obtain a correct equation, e.g. $\mathbf{r} = \mathbf{i} + 2\mathbf{j} + \lambda(2\mathbf{i} - 2\mathbf{j} + \mathbf{k})$ or $\mathbf{r} = 3\mathbf{i} + \mathbf{k} + \mu(2\mathbf{i} - 2\mathbf{j} + \mathbf{k})$ A1[2]
 - (ii) Using a direction vector for AB and a relevant point, obtain an equation for m in any form M1Obtain answer 2x - 2y + z = 4, or equivalent A1[2]

A1

[4]

iii) Express general point of AB in component form, e.g. $(1+2\lambda, 2-2\lambda, \lambda)$ or B1√ $(3 + 2\mu, -2\mu, 1 + \mu)$ Substitute in equation of m and solve for λ or for μ M1Obtain final answer $\frac{7}{3}\mathbf{i} + \frac{2}{3}\mathbf{j} + \frac{2}{3}\mathbf{k}$ for the position vector of N, from $\lambda = \frac{2}{3}$ or $\mu = -\frac{1}{3}$ A1Carry out a correct method for finding CN M1Obtain the given answer $\sqrt{13}$ A1[5] [The f.t. is on the direction vector for AB.]

Use c	or imply a correct normal vector to either plane, e.g. $3\mathbf{i} + \mathbf{j} - \mathbf{k}$ or $\mathbf{i} - \mathbf{j} + 2\mathbf{k}$ or rect method to calculate their scalar product value is zero and planes are perpendicular	B1 M1 A1	[3
	ER: Carry out a complete strategy for finding a point on l the line of intersection Obtain such a point, e.g. (0, 7, 5), (1, 0, 1), (5/4, -7/4, 0)	M1 A1	
	EITHER: State two equations for a direction vector $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ for l , e.g. $3a + b - c = 0$ and $a - b + 2c = 0$ Solve for one ratio, e.g. $a:b$ Obtain $a:b:c=1:-7:-4$, or equivalent State a correct answer, e.g. $\mathbf{r} = 7\mathbf{j} + 5\mathbf{k} + \lambda(\mathbf{i} - 7\mathbf{j} - 4\mathbf{k})$	B1 M1 A1 A1√	
	OR1: Obtain a second point on l , e.g. $(1, 0, 1)$ Subtract vectors and obtain a direction vector for l Obtain $-\mathbf{i} + 7\mathbf{j} + 4\mathbf{k}$, or equivalent State a correct answer, e.g. $\mathbf{r} = \mathbf{i} + \mathbf{k} + \lambda(-\mathbf{i} + 7\mathbf{j} + 4\mathbf{k})$	B1 M1 A1 A1	
	OR2: Attempt to find the vector product of the two normal vectors Obtain two correct components of the product Obtain i - 7j - 4k, or equivalent	M1 A1 A1 A1	
OR1:	State a correct answer, e.g. $\mathbf{r} = 7\mathbf{j} + 5\mathbf{k} + \lambda(\mathbf{i} - 7\mathbf{j} - 4\mathbf{k})$ Express one variable in terms of a second variable Obtain a correct simplified expression, e.g. $y = 7 - 7x$ Express the third variable in terms of the second Obtain a correct simplified expression, e.g. $z = 5 - 4x$ Form a vector equation for the line Obtain a correct equation, e.g. $\mathbf{r} = 7\mathbf{j} + 5\mathbf{k} + \lambda(\mathbf{i} - 7\mathbf{j} - 4\mathbf{k})$	M1 A1 M1 A1 M1 A1	
OR2:	Express one variable in terms of a second variable Obtain a correct simplified expression, e.g. $z = 5 - 4x$ Express the same variable in terms of the third Obtain a correct simplified expression e.g. $z = (7 + 4y)/7$ Form a vector equation for the line Obtain a correct equation, e.g. $\mathbf{r} = \frac{3}{4}\mathbf{i} - \frac{7}{4}\mathbf{j} + \lambda(-\frac{1}{4}\mathbf{i} + \frac{7}{4}\mathbf{j} + \mathbf{k})$	M1 A1 M1 A1 M1	[0

(i)	Express general point of l in component form e.g. $(1+2\lambda, 2-\lambda, 1+\lambda)$	B1	
	Using the correct process for the modulus form an equation in λ	M1*	
	Reduce the equation to a quadratic, e.g. $6\lambda^2 + 2\lambda - 4 = 0$	Al	
	Solve for λ (usual requirements for solution of a quadratic)	DM1	
	Obtain final answers $-i + 3j$ and $\frac{7}{3}i + \frac{4}{3}j + \frac{5}{3}k$	Al	
(ii)	Using the correct process, find the scalar product of a direction vector for l and a normal for p	M1	
	Using the correct process for the moduli, divide the scalar product by the product		
	of the moduli and equate the result to $\frac{2}{3}$	M1	
	State a correct equation in any form, e.g. $\frac{2a-1+1}{\sqrt{(a^2+1+1)}.\sqrt{(2^2+(-1)^2+1)}} = \pm \frac{2}{3}$	Al	
	Solve for a ²	M1	
	Obtain answer $a = \pm 2$	Al	