Electrical Circuits OP1

- 1 A student is investigating the relationship between current and potential difference (p.d.) for a component. He does not have access to a power supply which can apply a varying p.d. He decides to use a length of resistance wire to control the p.d. applied across the component.
 - (a) The student could use the wire to set up a potential divider or as a variable resistor in series with the component.

Potential divider circuit

Variable resistor circuit

State the advantage of using the potential divider circuit.

(1)

(b) The student uses a wire of resistance 24 Ω. Calculate the diameter of the wire.

resistivity of wire = $1.2 \times 10^{-6} \Omega$ m length of wire = 50 cm

(3)

Diameter =

(c) Another potential divider of length 40.0 cm and resistance 50.0 Ω has a p.d. of 12.0 V applied across its length.

The p.d. is measured across 7.16 cm of the wire.

Calculate this p.d.

(2)

2 An orange cell is made by inserting magnesium and copper electrodes into an orange. The orange cell acts as a source of e.m.f. which can be used to power a clock as shown.

The following measurements are obtained from the circuit.

e.m.f. / V	1.79
p.d. across clock / V	1.72
current in clock / µA	4.20

(a) Show that the internal resistance of the orange cell is about $20 \text{ k}\Omega$.	(3)
(b) Calculate the output power of the cell when it is used to power the clock.	(2)
Power =	
(c) The e.m.f. measurement was obtained by removing the clock and connecting a voltmeter with a resistance of $1.0 \times 10^7 \Omega$ across the electrodes.	
Discuss the suitability of this method.	245
Ro	(4)
	······································

Thermistors are semiconductor devices that can be used in control circuits. The resistance of a thermistor depends on its temperature. (a) Sketch a graph on the axes below to show how current varies with applied potential difference for a negative temperature coefficient thermistor. (2) Current Potential difference *(b) Explain why the resistance of a negative temperature coefficient thermistor changes as the potential difference is increased. (4)

4 The photograph shows a type of fish called an electric ray. Electric rays can produce an electric discharge to stun their prey.

Parts of a ray's body act as cells in a battery. In a ray living in fresh water the cells are arranged in series, but for a ray living in salt water the cells are arranged in parallel.

(a) The cell arrangement in rays can be investigated by comparing a circuit containing five cells in series with a circuit containing five cells in parallel. Each arrangement of cells is connected across a range of load resistors and the current and terminal potential difference (p.d.) are measured, as shown in the diagram.

The results for current are shown in the table.

Load resistance / Ω	Current in series arrangement / A	Current in parallel arrangement / A
0.1	2.7	7.2
1	2.0	1.3
10	0.55	0.14

It has been suggested that the cells are in series for a ray living in fresh water because fresh water is a poorer conductor of electricity than salt water.

Disc	uss whether the results su	pport this suggestion.		(2)
(ii) Calc cells	ulate the internal resistance in series. The e.m.f. of t	ce of one cell using the he five cells together is	e following results for s 6.9 V.	five
	Load resistance / Ω	Terminal p.d. / V	Current /A	
	2.2	3.3	1.5	
		Cilly		(3)
	16			
	Q [©]			
		I	Internal resistance =	
	lain why the voltmeter she stor if the ammeter has ne		d directly across the loa	ad
10313	to if the annieter has he	grigible resistance.		(2)

and found to be 1.54 V.	
Explain why the voltmeter used must have a high resistance.	
	(2)

5 The e.m.f. of an alkaline cell marked 1.5 V is measured with a high resistance voltmeter

Revision Made Simple. Com