Electrical Quantities MCQ QP1

1 Which of the following equations does not include any SI base quantities? \square A $P = W \div t$ \blacksquare B $Q = I \times t$ \square C $R = V \div I$ \square **D** $W = O \times V$ 2 Which of the following shows a derived unit expressed in terms of SI base units? ■ A coulomb = ampere × second ■ B ohm = volt ÷ ampere ble coll C volt = joule ÷ coulomb ■ D watt = joule ÷ second 3 A circuit contains a battery of four cells in series. Each cell has e.m.f. 1.5 V. evision Mo A charge of 3.0 C passes through the battery. What is the energy transferred? ☑ A 0.5 J ■ B 2.0 J □ C 4.5 J ■ D 18 J 4 Which of the following is equivalent to a single SI base unit? A coulomb per second B joule per coulomb C joule per second

D metre per second

5 The current in a wire is *I* and the drift velocity of the electrons in the wire is *v*. The wire is replaced with another of the same metal but half the diameter.

If the current in the new wire is the same, the drift velocity is

- $\square A \frac{v}{4}$
- \square B $\frac{v}{2}$
- ☑ C 2v
- □ D 4v
- 6 Which of the following current-potential difference (*I-V*) graphs shows the correct behaviour for a negative temperature coefficient thermistor?

- □ A
- \square B
- \square C
- \square D

7 A potential difference of 6 V is applied to a component to provide a current of 3 A for 2 minutes.

In this time the charge flowing through the component is

- A 6C
- B 36 C
- □ C 360 C
- D 2160 C

Revision Made Simple.