Energy, Work & Power MS1

Question Number	Answer		Marl
1	Use of power = $660 \times mass$ (or see 4.62)	(1)	
	Use of energy transferred = power × time (allow power = 660)	(1)	
	Use of $E_k = \frac{1}{2} mv^2$	(1)	
	$v = 1.1 \text{ (m s}^{-1})$	(1)	4
	[since m cancels it is possible to get 1.1 if 2 mistakes are made – need to check the working. Ignore power of ten errors in the mass]		
	Example of calculation Power supplied by body = $(660 \text{ W kg}^{-1}) \times (0.70 \times 10^{-6} \text{ kg}) = 4.62 \times 10^{-4} \text{ W}$ Energy transferred = $(4.62 \times 10^{-4} \text{ W}) \times (0.85 \times 10^{-3} \text{ s}) = 3.93 \times 10^{-7} \text{ J}$		
	$v = \sqrt{\frac{2 \times 3.93 \times 10^{-7} \text{ J}}{0.70 \times 10^{-6} \text{ kg}}}$		
	$v = 1.06 \text{ m s}^{-1}$	(1)	
	Use of $a = \frac{v - u}{t}$	(1)	
	$a = 1200 \text{ or } 1300 \text{ m s}^{-2} \text{ (ecf } v \text{ or "show toet" value)}$	(1)	2
	Example of calculation		
	$a = \frac{1.06 \mathrm{m s^{-1}} - 0}{0.85 \times 10^{-3} \mathrm{s}}$		
	$a = 1250 \text{ m s}^{-2}$		

2	(QWC – work must be clear and organised in a logical manner using technical terminology where appropriate)		
	the oar exerts a force on the water	(1)	
	by N3 the water exerts an opposite force (on the oar)	(1)	
	there is a resultant / net / unbalanced force	(1)	
	by N1/N2 the boat accelerates	(1)	4
	work done = area under the graph	(1)	
	Value in range of 400 - 600 (J)	(1)	
	Accurate value in range 501 - 540 (J)	(1)	3
	Example of calculation 0.2 0 m × 100 N = 20 J 26.2 squares × 20 J = 524 (J)		
	See/use power = $\frac{\text{work done}}{\text{time}}$	(1)	
	Or divides energy by time per stroke (60/24 or 2.5 s) Multiplies energy by rate (24/60 or 0.4 s ⁻¹)	(1)	
	Power = 210 W (ecf from part (b)(1)) (show that value gives 200 W) Example of calculation	(1)	3
	Time per stroke = $60/24 = 2.5 \text{ s}$ Power = $\frac{524 \text{ J}}{2.5 \text{ s}} = 210 \text{ W}$		
	Friction / drag / resistance with the water	(1)	es.
	(causes) K.E. / turbulence / movement of the water	(1)	2
16,000	(The boat and the rower have the same velocity but) the rower and the boat have different masses	(1)	1
	Total for Question 18		13

Question Number	Answer		Mark
3	The balloon has the maximum/greatest speed/velocity Or the greatest distance is covered in the shortest/same time	(1)	1
	Use of $\Delta E_{\text{grav}} = mg\Delta h$ (with a Δh and not just h)	(1)	
	Use of average rate of energy transfer = $\frac{\text{energy}}{0.15 \text{ s}}$ (do not penalise power of ten errors for MP2)	(1)	
	Average rate of energy transfer = $0.18 - 0.19(W)$	(1)	3
	Example of calculation $\Delta E_{\text{grav}} = 0.004 \text{ kg} \times 9.81 \text{ N kg}^{-1} \times (1.8 \text{ m} - 1.1 \text{ m}) = 0.027 \text{ J}$ Average rate of energy transfer = $\frac{0.027 \text{ J}}{0.15 \text{ s}} = 0.18 \text{ W}$		
	Total for question 12		4

Question Number	Answer		Mark
4	Force × distance moved in the <u>direction</u> of the (applied) force (An equation with defined terms and the direction stated of the distance can score this mark)	(1)	1
	Use of KE = $\frac{1}{2}mv^2$ (with any velocity in m $\sqrt{2}$)	(1)	e.
	Use of Work done = Fd (with any energy)	(1)	
	d= 85 m	(1)	
	Use of $F = ma$ to find the acceleration	(1)	
	Use of suitable equation(s) of motion to find the braking distance	(1)	
	d= 85 m	(1)	3
	Example of calculation		
	$KE_{before} = \frac{1}{2} \times 1.5 \times 10^{3} \text{ kg} \times (24.6 \text{ m s}^{-1})^{2} = 4.54 \times 10^{5} \text{ J}$ $KE_{after} = \frac{1}{2} \times 1.5 \times 10^{3} \text{ kg} \times (13.4 \text{ m s}^{-1})^{2} = 1.35 \times 10^{5} \text{ J}$		
	$KE_{after} = \frac{1}{2} \times 1.5 \times 10^{8} \text{ kg} \times (13.4 \text{ m/s}^{-1})^{-1} = 1.35 \times 10^{-3} \text{ J}$ Transfer of KE = $4.54 \times 10^{5} \text{ J} - 1.35 \times 10^{5} \text{ J} = 3.19 \times 10^{5} \text{ J}$		
	1 Transfer of RE = 4.54 × 10 J = 1.55 × 10 J = 3.19 × 10 J $3.19 \times 10^5 \text{ J} = 3750 \text{ N} \times d$		
	d = 85.1 m		
	Total for question 13		4