Fluids	MS2
--------	-----

Question Number	Answer		Mark
1(a)(i)	No abrupt change in direction/speed of flow Or no eddies Or fluid flows in layers/flow lines/streamlines Or no mixing of layers Or layers remain parallel Or velocity at a (particular) point remains constant (smooth and streamlined are not sufficient)	(1)	1
1(a)(ii)	Any 2 from: Small object Smooth surface Low/small velocity	(1) (1) (1)	2
1(b)(i)	Distance between markers Diameter of the ball bearing	(1) (1)	2
1(b)(ii)	Weight of the ball bearing	(1)	1
1(b)(iii)	Upthrust Or weight of glycerol/fluid displaced (by the ball bearing)	(1)	1
1(b)(iv)	Calculate the velocity (of the ball bearing) (for each $d(\partial p)$ Or use $v=h/t$	(1)	
	Plot v against r^2 (or t against $1/d^2$ etc.)	(1)	
	Determines/calculates/measures the gradient	(1)	
	$\eta = \frac{2g(\rho_{\rm b} - \rho_{\rm g})}{9 \times \text{gradient}} \text{ Or gradient} = \frac{2g(\rho_{\rm b} - \rho_{\rm g})}{9 \times \eta} \text{ Or correct alternative}$ (only allow MP2, MP3 & MP4 if a straight line would be produced) (do not allow MP2 if graph axes are complex, e.g. $W_{\rm b} - W_{\rm g}$ against $6\pi rv$) (Allow converse answer for a graph of r^2 against v)	(1)	4
1(c)	At a low temperature: the flow rate (of the glycerol) is reduced/slower Or speed (of the glycerol) decreases Or (the glycerol) moves slowly (Do not credit ref to nitrogen removal or flow of waste water) the viscosity is high/large/increased (do not accept "thicker")	(1) (1)	2
	(marks not awarded for answer is in terms of increasing temperature and decreasing viscosity as it is not in the context of the question) Total for Question		13

Question Number	Answer		Mark
2	Viscosity is lower at higher/room temperature	(1)	
	(Butter at a higher temperature:) requires less force/friction/resistance (to spread) Or less work needs to be done (to spread the butter)	(1)	2
	(Accept converse answer for MP1 and MP2)		
•	Total for question		2

Question Number	Answer		Mark
3(a)(i)	Weight/W/mg	(1)	
	Upthrust/U	(1)	
	Drag/Friction/Fluid resistance/F/D/V	(1)	3
	(all lines must touch the black dot and should be approximately vertical by eye) (-1 for each additional force)		
	upthrust upthrust upthrust		
	drag weight		
	drag weight $drag and/+ weight$		
*3(a)(ii)	(QWC – work must be clear and organised in a logical manner using technical terminology where appropriate)		
	Upthrust is greater for the larger bubble	(1)	
	Drag/friction increases	(1)	
	Upthrust increases more than drag Or greater (initial) resultant force on bubble		
	Or higher terminal velocity Or upthrust is related to volume/radius ³ and drag related to area/radius ⁽²⁾	(1)	3
3(b)(i)	Both graphs straight from $t = 0$ (labels not required)	(1)	
	Initial gradient of A less than gradient of B (minimum of 1 label required)	(1)	2
	(The lines do not have to meet i.e. the lines could stop before the meeting point The lines can start anywhere on the displacement axes)		
	S B B A A A t		

3(b)(ii)	Measurement from photographs 0.5 - 0.7 (cm)	(1)	
	Use of distance = measurement \times 12	(1)	
	Use of speed = distance/time	(1)	
	speed = $0.18 - 0.25$ m s ⁻¹	(1)	4
	Example of calculation Measurement = 0.55 cm Distance = 0.55×10^{-2} m× 12 = 6.6×10^{-2} m speed = $\frac{6.6 \times 10^{-2} \text{ m}}{0.33 \text{ s}}$ speed = 0.20 m s ⁻¹		
3(c)(i)	(Stokes' law is only for) small (solid) spheres Or(Stokes' law is only for) laminar flow Or there is turbulent flow	(1)	
	Additional/less drag due to the bubbles having a non-stationary surface Or Stokes' law cannot be applied to a gas bubble because they have a non- stationary surface Or sides of container too close to bubbles Or volume/shape changes as it rises	(1)	2
*3(c)(ii)	(QWC – work must be clear and organised in a logica ¹ manner using technical terminology where appropriate)		
	Either: Resultant forces method 4 marks Measure the diameter/radius of the sphere (from the photograph)	(1)	
	Use of $4\pi r^3/3$ to find the volume of the sphere	(1)	
	Use $V\rho g$ to find the upthrust / weight of the bubble	(1)	
	Drag = upthrust – weight	(1)	
	Or: Stokes' law method 2 marks Measure the diameter/radius of the sphere (from the photograph)	(1)	
	Calculate the (terminal) velocity using $v = s/t$ and substitute into $F = 6\pi r \eta v$	(1)	4
	Total for question		18

Question Number	Answer		Mark
4(a)	X is Upthrust Or weight of oil/fluid displaced	(1)	
	Y is Drag Or friction Or fluid resistance Or viscous/resistive force	(1)	
	Z is Weight Or gravitational pull/force	(1)	3
4(b)	Diameter of the ball	(1)	
	Distance and time (to travel measured distance)	(1)	2
	(1 mark max for radius and (terminal) velocity if neither mark awarded)		
	Total for Question		5