Forces QP 2 1 Soil is usually made up of a variety of particles of different sizes. The photograph shows what happens when soil is mixed up with water and the particles are allowed to settle. - (a) The dot below represents a particle of the soil falling through water. - Add labelled arrows to show the three forces acting on the particle as it falls through the water. (2) | *(ii) Explain why a particle held stationary in water and then released accelerates
downwards at first but then reaches a steady downwards speed. | | l accelerates | |--|---|---------------| | | CONTRACTOR | (4) | (iii) Write an expression showing the relationship for these forces when the particle
is falling at a steady speed. | | |--|----------------------| | | (1) | | A typical particle of sand in the sample has the following property | ties: | | diameter = 1.6×10^{-3} m | | | volume = $2.1 \times 10^{-9} \text{ m}^3$ | | | density = 2.7×10^3 kg $^{-3}$ | | | weight = $5.7 \times 10^{-5} \text{ N}$ | | | (i) Show that the upthrust acting on the particle is about $2 \times 10^{\circ}$ | ⁻⁵ N. | | density of water = $1.0 \times 10^3 \text{ kg m}^{-3}$ | | | | (2) | (ii) Calculate the steady downwards speed this particle would as | chieve if allowed to | | fall through water. | | | viscosity of water = 1.2×10^{-3} Pa s | (3) | | | 8.27 | Speed = | | (c) The different types of particles in soil can be defined according to their diameters, as in the following table. | Soil particle | Particle diameter | |----------------|---------------------| | clay | less than 0.002 mm | | silt | 0.002 mm – 0.05 mm | | sand | 0.05 mm – 2.00 mm | | fine pebbles | 2.00 mm - 5.00 mm | | medium pebbles | 5.00 mm – 20.00 mm | | coarse pebbles | 20.00 mm - 75.00 mm | The photograph shows that when soil is allowed to settle in water, the pebbles tend to be found towards the bottom, followed by sand, silt and clay in succession. | Explain why this happens. Assume that all particles have the same density. | | |--|-----| | | (3) | (Total for Question = 15 marks) 2 A kite is held by a string and flies because of lift produced by the flow of air. Figure 2 shows a free-body force diagram for the kite. (a) Sketch a labelled vector diagram to show that the four forces are in equilibrium. (1) | 11071 | culate the tension in the string. State its magnitude and direction from the izontal. | | |---------|--|-----| | | | (4) | Magnitude of tension = | | | | Direction of tension from the horizontal = | | | (i) (i) | The wind speed decreases so the girl flying this kite walks into the wind at a | | | | constant speed of 2.0 m s ⁻¹ to maintain the forces shown. Calculate the work | | | | | (2) | | | constant speed of 2.0 m s ⁻¹ to maintain the forces shown. Calculate the work | (2) | | | constant speed of 2.0 m s ⁻¹ to maintain the forces shown. Calculate the work | (2) | | | constant speed of 2.0 m s ⁻¹ to maintain the forces shown. Calculate the work | (2) | | | constant speed of 2.0 m s ⁻¹ to maintain the forces shown. Calculate the work | (2) | | | constant speed of 2.0 m s ⁻¹ to maintain the forces shown. Calculate the work done by the girl as she walks 25 m. | | | | work done = | | | | constant speed of 2.0 m s ⁻¹ to maintain the forces shown. Calculate the work done by the girl as she walks 25 m. | | | | work done = | | | | work done = | | 3 A student is asked to provide an explanation of why a bottle on a table remains stationary. (a) Complete a free-body force diagram for the bottle. (2) (b) The student writes the following incorrect explanation. | The bottle pushes down on the table, so by Newton's first law, the table pushes up with an equal and opposite force. According to Newton's third law, if the forces are balanced, | | | | | |---|--------------------|--|--|-----| | | | | | | | | | | | | | nothing can move. | | | | | | mi | | | | :! | | The student's explanation | contains errors. | | | | | Rewrite the student's expla | anation correctly. | | | (2) | | | | | | (3) | (Total for Question = 5 marks) | 4 | A man is walking at a constant horizontal velocity of 1.2 m s ⁻¹ in the rain. To the man the rain appears to be falling vertically at a velocity of 1.8 m s ⁻¹ . | |---|--| | | Draw a labelled vector diagram, to scale, and use it to determine the actual velocity of the rain. (5) | Magnitude of the actual velocity of the rain = | | | Angle of the rain to the vertical = | | | (Total for Question = 5 marks) | 5 The diagram shows a submarine and one of the forces acting on it. The submarine moves at a constant depth and speed in the direction shown. (a) Add labelled arrows to show the other three forces on the submarine.(2) (b) State **two** equations that show the relationship between the forces acting on the submarine. (2) (c) The submarine has a volume of 7100 m^3 . Show that the weight of the submarine is about $7 \times 10^7 \text{N}$. Density of sea water = 1030 kg m^{-3} (2) | (d) The submarine can control its depth by changing its weight. This is done by
adjusting the amount of water held in ballast tanks. | | |--|-----| | As the submarine dives to greater depths the increased pressure of the surrounding water produces a compressive strain. | | | (i) Explain what is meant by compressive strain. | (1) | | | | | (ii) This decreases the volume of the submarine. Explain the action that should be
taken to maintain a constant depth as the volume of the submarine is decreased | (2) | | | | | (iii) The submarine is made from steel. Suggest why a material, such as fibreglass,
which has a much smaller Young modulus than steel would be unsuitable at
greater depths. | | | | (2) | | (Total for Question = 11 mark | ve) | 6 Many hand held devices such as smartphones and tablet computers contain accelerometers. These allow changes in orientation of the device to be tracked. A student models a simple accelerometer by attaching a small mass on a string to the roof of a car. When the car starts moving, the string is seen to change position as shown below. (a) (i) Complete a free body force diagram for the mass when the car starts moving. (2) . (ii) Draw a vector diagram, in the space below, to show how the resultant force on the mass is produced. (2) | | | (2) | |---|---|-----------------------------| | Sketch the positions of the n | nass and string when the car is r | moving in the same | | | la cita | | | (i) moving with constant ve | | | | 23.000 | ter acceleration than in (a)(iii), | | | (iii) decelerating. | | (3) | | | | | | (i) moving with constant velocity, | (ii) undergoing a much
greater acceleration
than in (a)(iii), | (iii) decelerating. | | 7777777 | 7777777 | 7777777 | | | | | | Explain why the string woul | d not become horizontal, howe | ver great the acceleration. | | | | | | Suggest why many devices of each other. | contain 3 accelerometers, arrang | ged at right angles to | | National Children | | |