Question Number	Answer		Mark
1	F	(1)	
	Use of $\sigma = \frac{F}{A}$		
	Use of cross sectional area = πr^2 and d = 2r	(1)	
	Diameter = 1.6×10^{-3} m	(1)	3
	Example of calculation		
	$500 \times 10^6 \text{ Pa} = \frac{950 \text{ N}}{A}$		
	$A = 1.9 \times 10^{-6} m^2$		
	Diameter = $\sqrt{\frac{4 \times (1.9 \times 10^{-6} \text{ m}^2)}{\pi}}$		
	Diameter = 0.00156 m		
	Total for Question		3

Question Number	Answer		Mark
2(a)	Copper is malleable	(1)	
	Can be hammered/beaten/bent into shap	(1)	2
2(b)	Steel is stiff Or steel has a high Young movialus Does not bend / deform (If neither MP is scored then strong Or high UTS scores MP1 only)	(1) (1)	2
	Total for Question		4

Question Number	Answer	Mark
3(a)(i)	Less compression / extension / Δx (must be comparative) (1) Driver / passenger less comfortable (1) Or driver / passenger feels the shock (1) Or car body not kept at the same level (1)	
	Or the drive is more bumpy. (1)	2
3(a)(ii)	Straight line starting from (0,0) above the original line (1) Force New spring Original spring Extension	
3(b)	Use of $F = k\Delta x$ (1) (Δ) $x = 0.316 - 0.205$ (= 0.111 m) stated or implied (allow -ve here only) (1) $k = 3.67 \times 10^4$ N m ⁻¹ (1) Example of calculation $\Delta x = 0.316$ m - 0.205 m = 0.111 m 4.07×10^3 N = $k \times 0.111$ m $k = 3.67 \times 10^4$ N m ⁻¹	
	Total for Question	6

Question Number	Answer		Mark
4(a)(i)	The increase in extension is constant for a fixed increase in mass		
(u)(I)	Or mass is proportional to extension		
	Or extension is proportional to mass		
	Or graph is a rising/increasing straight line	(1)	
	The wire obeys <u>Hooke's law</u>	(1)	2
4(a)(ii)	Use of area under the graph Or use of $\frac{1}{2}F\Delta x$ (with <i>m</i> or <i>F</i>)	(1)	
	Identify that the limit of proportionality is at 2.6 ± 0.1 kg	(1)	
	Elastic potential energy = 0.5 J	(1)	3
	(accept 0.40 J to 0.50 J)		
	Example of calculation		
	Area under the graph = $\frac{1}{2} \times 3.5 \times 10^{-2}$ m × 2.6 kg = 0.046 kg m		
	Area $\times g = 0.046 \text{ kg m} \times 9.81 \text{ N kg}^{-1}$		
	Elastic potential energy = 0.45 J		
4(a)(iii)	The wire will experience a large (increase in) extension/strain for a small		
	(increase in applied) force/stress/mass	(1)	
	The wire will not return to its original length/shape (once the force is		
	removed) Or the wire will be permanently deformed		
	Or the wire will exhibit plastic deformation/behaviour	(1)	2
4(b)(i)	Thinner wire Or smaller CSA/ diameter/radius		
	Or longer wire		
	Or wire with a lower stiffness/k/spring cor stant		
	Or wire that is more ductile Or wire with a lower Young modulus	(1)	1
	(comments must be comparative)		
4(b)(ii)	Max 2		
	Use a pointer on the wire masses	(1)	
	Sensible suggestion to reduce parallax		
	e.g. read at eye level Or place the rule as near as possible to the mass/wire	(1)	
	Use a set square to ensure rule is vertical	(1)	
	Wait for the extension to finish	(1)	
	Add masses gently	(1)	2
	Total for question		10