Question Number	Answer		Mark
1(a)	When car travelling towards gun, (detected) wavelength is smaller/decreased		
	Or When car travelling away from gun (detected) wavelength is larger/increased	(1)	
	When travelling towards gun (observed) frequency is higher/increased	(1)	
	When travelling away from gun (observed)frequency is lower/decreased	(1)	
	Greater speed (of car) gives a greater change in frequency.	(1)	4
1(b)	Use of $v = s/t$	(1)	
	Calculates difference in times or difference in distances	(1)	
	Correct use of factor 2	(1)	
	$v = 29.7 \text{ m s}^{-1}$	(1)	4
	Example of calculation $\Delta t = (3.333 \times 10^{-7} \text{ s}) - (3.315 \times 10^{-7} \text{ s}) = 1.8 \times 10^{-9} \text{ s}$ $1.8 \times 10^{-9} \text{ s} \div 2 = 9 \times 10^{-10} \text{ s}$ $s = (9 \times 10^{-10} \text{ s} \times 3 \times 10^8 \text{ m s}^{-1}) = 0.27 \text{ m}$ $v = 0.27 \text{ m} \div 0.0091 \text{ s} = 29.7 \text{ m s}^{-1}$		
1(c)	Infrared/lidar has shorter wavelength than microwave/redar Or microwave/radar has a longer wavelength than infrared/lidar	(1)	
	Shorter wavelength has less diffraction (accept spread out, divergent) Or Longer wavelength has greater diffraction (accept spread out, divergent)	(1)	
	Or infrared/lider will not pick up a lections from other cars		
	Or microwave/radar more likely to pick up multiple reflections	(1)	3
	Total for question		11
	200		

Question	Answer		Mark
Number			
2(a)	Time for return trip divided by 2	(1)	
	Multiply by speed of light (accept <i>c</i> or value)	(1)	2
2(b) (i)	Use of $s = vt$ with speed of light	(1)	
	Pulse length = $0.06 \text{ m or } 6 \text{ cm}$	(1)	2
	Example of calculation		
	$s = 3.0 \times 10^{\circ} \text{ m s}^{-1} \times 2.0 \times 10^{-10} \text{ s}^{-1}$		
	= 0.060 m or 6.0 cm		
2(b) (ii)	Distance is to the nearest km but pulse length is to the nearest mm, so acceptable	(1)	
	(accept pulse length to nearest cm)	(1)	
	Not acceptable because 6.0 cm pulse is longer than 3.8 cm,		
	Or The distance is calculated from a difference over 40 years, so it is over a	(1)	2
	metre, so it is acceptable compared to 6.0 cm	(1)	2
2(b) (;;;)	So they can tell which received pulse matches which sent pulse	(1)	1
2(D) (III)	(Ignore: 'so one pulse is received before the next is sent')	(1)	I
	(Accept so they can identify the start of a pulse or reference to another feature or		
	the pulse profile)		
2(c)(i)	Use of $P = E/t$	(1)	
- (0) (1)	Power = 1.2×10^9 W	(1)	2
		. ,	
	Example of calculation		
	$P = 115 \times 10^{-3} \text{ J} / 100 \times 10^{-12} \text{ s}$		
	$= 1.15 \times 10^9 \mathrm{W}$		
	20		
2(c) (ii)	Diffraction would cause the beam to spread out and weaken the signal further	(1)	
	.0		
	The aperture is much larger than the wavelength	(1)	
			•
	So diffraction is minimised/.ero	(1)	3
	Total for question		12
	<u>~</u> 0 ⁻		
	X		

Question	Answer		Mark
Number			
3 (a)	(Motion of person causes) a change in frequency/wavelength	(1)	
	Compared to the signal from X directly	(1)	
	Correctly states change in frequency/wavelength for motion described	(1)	3
3(b)	Pulse-echo gives the distance of an object		
	Or		
	Pulse-echo gives the position of an object		
	Or		
	Pulse-echo can detect a person who is not moving		
	Or		
	Pulse-echo can detect inanimate objects		
	Or		
	Doppler only works with moving objects		
	Accept any sensible physics based suggestion that doesn't also apply to the		
	Doppler system	(1)	1
	Total for Question		4

ead doesn't also apply to

Question Number	Answer		Mark
4(a)	The vibration generator is vibrating along the axis of the spring Or the displacements in the photograph are all along the axis of the spring Or there are compressions and rarefactions	(1)	
	The displacement/vibration is parallel to the direction of propagation of the waves produced by the generator Or The displacement/vibration is the same as the direction of travel of the waves	(1)	2
4(b)	A point with zero amplitude Or a point where the displacement is always zero	(1)	1
4(c)	Waves from the generator are reflected at the end Or waves are travelling in both directions When the two waves meet they superpose/interfere Producing points where the waves are in phase and points where they are in antiphase Or producing points of zero amplitude and points of maximum amplitude (producing nodes and antinodes not sufficient as nodes have been identified	(1) (1)	
	already)	(1)	3
4(d)	Determines wavelength from photograph (0.14 m) Use of velocity = frequency x wavelength Velocity = 4.8 (m s ⁻¹) [max 1 mark only if wrong wavelength]	(1) (1) (1)	3
	Example of calculation $\lambda = 0.72 \text{ m} \div 5$ $v = f\lambda$ $v = 34 \text{ Hz} \times 0.14 \text{ m}$ $v = 4.8 \text{ m s}^{-1}$		
4(e)	Use of velocity = distance / time Divides by 42 to find the time for the pulse to travel one length of the spring / multiplies length by 42 to find total distance / applies factor of 2 correctly Velocity = 4.9 m s^{-1}	(1) (1) (1)	3
4(f)	Max 3, at least 1 from each of similarities and differences Similarities		
	Both are standing/stationary waves	(1)	
	The wave velocity in the second is 0.36 m x 14 Hz = 5.0 m s ⁻¹ , so the velocity is	(1)	
	about the same	(1)	
	DifferencesIn the first the length of the spring is 5 wavelengths but here it is 2 wavelengthsOr the wavelength is longer for the second springOr first wave has more nodes/antinodes than second waveOr the nodes/antinodes are closer together in the first photographSecond wave is a transverse wave (not just 'not longitudinal')	(1)	
	Or the displacement is perpendicular to the direction of propagation of the waves		
	Or first wave has compressions and rarefactions (and second wave doesn't)	(1)	3
	Total for Ouestion		15

Question Number	Answer	Mark
5(a)	The vibrations/oscillations/movement of the molecules is parallel to /along same line as energy/ wave travels /in the same direction as the wave travels (1)	1
5(b)(i)	Any two compressions accurately marked (1)	1
5(b)(ii)	Any two rarefactions(one could be at left hand end) accurately marked (1)	1
5(b)(iii)	Any correct answer e.g. centre of compression to centre of adjacent compression (1)	1
5(c)	Two positions of compressions labelled P or C, approximately 1 or 2 correct wavelengths apart(1)Positioned half way from a true R to the next true C(1)	2
	$Y \xrightarrow{P} T_{R} \xrightarrow{T} \xrightarrow{T} T_{R} \xrightarrow{T} \xrightarrow{T} T_{R} \xrightarrow{T} T$	
	Diagram for Q11 showing possible markings of C, R and P	
	Total for question	6
Que	stion Answer Mark	_
Nur 6(a)	nber 1 (i) (Ultrasound because) they are above the audible range/frequency (1)	

Question	Answer		Mark
Number			
6(a)(i)	(Ultrasound because) they are above the audible range/frequency (1)	1
	('not in the range' or 'out of the range', is not precise enough, need the	clear	
	idea that it is above the audible range. Accept greater than 20,000 Hz)		
6(a)(ii)	Substitution into speed = distance/time (1)	
	Use of $t = 0.8 \times 10^{-4}$ s		
	OR halving distance found with $t = 1.6 \times 10^{-4}$ s (1))	
	Distance = 0.12 m (1))	3
	(answer of 0.24 m scores 1)		
	Example of calculation		
	$Distance = speed \times time$		
	Distance = $1500 \text{ m s}^{-1} \times 0.8 \times 10^{-4} \text{ s}$		
	Distance = 0.12 m		
6(a)(iii)	The idea that one pulse must return before the next is sent	(1)	1
	(ignore references to interference/stationary waves)		