Photoelectric Effect MS2

Question	Answer		Mark
Number			
1*(a)	(QWC – Work must be clear and organised in a logical manner using technical wording where appropriate)		
	With waves energy could build up	(1)	
	Any ke could be possible Or ke would not be limited	(1)	
	One photon to one electron	(1)	
	E = hf, so energy transfer limited		
	Or $\frac{1}{2}mv^2 = hf - \phi$ so there is a maximum ke	(1)	4
(b)	Use of $E = hf$	(1)	
	Correct use of 1.6×10^{-19} C	(1)	
	Use max ke = $hf - \varphi$	(1)	
	$\frac{1}{2} mv^2 = 1.3 \times 10^{-18} \text{ J}$	(1)	4
	Example of calculation		
	$\overline{E} = 6.63 \times 10^{-34} \text{ J s} \times 2.5 \times 10^{15} \text{ Hz} = 1.7 \times 10^{-18} \text{ J}$		
	$\varphi = (2.3 \text{ eV} \times 1.6 \times 10^{-19} \text{ C}) \text{ J}$		
	$= 3.7 \times 10^{-19} \mathrm{J}$		
	$\frac{1}{2} mv^2 = 1.7 \times 10^{-18} \text{ J} - 3.7 \times 10^{-19} \text{ J} = 1.3 \times 10^{-18} \text{ J}$		
	Total for Question		8
	Nade		
			3.6.1

Question Number	Answer		Mark
2(a)	Packet / package / quantum of (energy / light / e-m radiation / light energy /		
2(a)	e-m energy – something relevant – no mark simply for packet)	(1)	
	<u>electromagnetic radiation / electromagnetic</u> energy (independent mark)	(1)	2
(b)(f)	An allowed/net big/discrete avantity of an energy for (on electron in) the		1
(D)(I)	atom	(1)	1
(b)(ii)	(Photon is emitted when) an electron moves to a lower energy level	(1)	
	The lowest frequency photon will be emitted for a transition from level 5 to		
	level 4	(1)	
	Use of difference in energy levels in eV	(1)	
	Use of $W = QV$ for conversion to Joule	(1)	
	Use of $E = hf$	(1)	
	Frequency = 4.1×10^{13} Hz	(1)	6
	Example of calculation		
	difference in energy levels = $(-0.38 \text{ eV}) - (-0.55 \text{ eV}) = 0.17 \text{ eV}$		
	$W = 0.17 \times 1.6 \times 10^{-19} \text{ J}$		
	$f = 0.17 \times 1.6 \times 10^{-19} \text{ J} \div 6.63 \times 10^{-34} \text{ J s}$		
	$= 4.1 \times 10^{13} \mathrm{Hz}$		
	Total for Question		9

Question	Answer		Mark
Number			
*3	(QWC – Work must be clear and organised in a logical manner using technical wording where appropriate)		
	 Photons (from incident light) Photons/light/e-m radiation cause emission of electrons from surface of metal Photon has energy hf (E = hf not sufficient alone, but link of E to photon may follow on by implication from previous writing) Emission only if photon energy greater than (or equal to) φ (work function) Or φ (work function) is minimum energy required for emission of electrons ½ mv² is the kinetic energy of the emitted electron (It is max because) some energy may be transferred to the metal (accept description of more energy required to reach surface if atom/electron not at the surface) 	 (1) (1) (1) (1) (1) (1) 	6
	Total for Question		6

RevisionMadesinnole.com

Question	Answer		Mark
Number			
4(a)	The (minimum) energy required to remove one/an electron from the		
	surface of the metal	(1)	1
*4(1-)	(must refer to surface)		
*4(D)	(QWC- Work must be clear and organised in a logical manner using		
	technical wording where appropriate.)		
	• Increasing the intensity (of light) increases the number of		
	electrons emitted(per sec) Or number of electrons emitted(per		
	sec) depends on the intensity (of light)	(1)	
	• One photon releases one electron	(1)	
	• Intensity determines number of photons	(1)	
	OR		
	• Increasing the intensity (of light) does not increase the		
	energy/speed of the electrons	(1)	
	One photon releases one electron	(1)	
	• Energy of photon determined by/depends on frequency (not	(1)	
	intensity) Or $E = hf$	(1)	
	• Deleve a contain fractionery / threshold fraction and electrons		
	• Below a certain frequency / uneshold frequency to electrons emitted Or above a certain wavelength radelectrons emitted	(1)	
	 Energy of photons increases with / densuds on frequency 		
	Or $F = hf$	(1)	
	 Each photon needs a minimum recount of energy / work function 		
	Or One photon releases one electron	(1)	
	OR		
	• Electron emission starts at once (even for low intensity)	(1)	
	One photon releases one electron	(1)	
	• Wave theory would allow energy to build up	(1)	
	OR Q		
	• Increasing the frequency (of light) increases the energy/speed of		
	the electrons Or Increasing the frequency (of light) increases the		
	stopping potential	(1)	
	• Energy of photon determined by/depends on frequency $\mathbf{Or} \mathbf{F} = h\mathbf{f}$		
	 One photon releases one electron Or Wave theory would allow 	(1)	
	energy to build up	(1)	3
	chergy to build up	(1)	3
	(Max one mark for a 2 nd or 3 rd point if no correct observation given)		
	Total for question		4

Question Number	Answer		Mark
5(a)	A statement which implies only certain energy levels are allowed e.g. Allowed/possible energy of atoms/electrons Discrete energy of an atom/electron	(1)	1
5(b)	Identifies correct pairs of levels, 4 and 2 AND levels 2 and 1 Two arrows both showing correct direction [irrespective of identified levels]	(1) (1)	2
	Level 4 0		
	Level 32.8 Level 23.2		
	Level 1		
5(c)	Max 3		
	Atom/electron gains energy and moves to a higher level Or atom/electron becomes excited	(1)	
	atom/electron has discrete energies Or atom/electron can only move between fixed levels Or only certain energy changes are possible	(1)	
	atom/electron falls to a lower level	(1)	
	By emitting energy in the form of photons Or reducing their energy by emitting photons	(1)	
	Photons have a specific energy/frequency Or reference to $E = hf$ Or photon energy $= E_2 - E_1$	(1)	3
5(d)	Use of $E = hf$ with any of the possible energy differences Identifies ΔE as $(\pm) 0.4 (\times 10^{-19} \text{ J})$ $f = 6.0 \times 10^{13} \text{ Hz}$	(1) (1) (1)	3
	Example of calculation Smallest energy difference is 0.4×10^{-19} J $f = 0.4 \times 10^{-19}$ J / 6.63×10^{-34} Js $f = 6.03 \times 10^{13}$ Hz		
5(e)	Divides an energy by 1.6×10^{-19} Energy = 4.0 (eV) (no ue)	(1) (1)	2
	Example of calculation Energy = 6.4×10^{-19} J /1.6 × 10 ⁻¹⁹ C Energy = 4.0 eV		
	Total for question		11

Question	Answer	Mark
Number		
6 (a)	A statement which implies only certain energies are allowed e.g.	
	Allowed/possible energy of atom/electron (in an atom)	
	Discrete energy of an atom/electron	
	One of the energies of the atom/electron	1
	Energy an atom/electron can have	
(b)	Photon is a (discrete) package/packet/quantum of	
	(electromagnetic) energy/particle of light	1
(c)	(energy of) E_2 - (energy of) E_1	1
(d)	See $E = h c / \lambda$ OR use of $v = f\lambda$	1
	Substitution into $E = h c / \lambda$ OR use of $E = h^{2}$	1
	$E = 3.14 \times 10^{-19} \text{ J}$ or 1.96 eV	1
	Example of answer	
	$F = (6.63 \times 10^{-34} \text{ Js} \times 3 \times 10^{-8}) \div 6.33 \times 10^{-7} \text{ m}$	
	$E = 3.14 \times 10^{-19} \text{ J}$	
	<u>No</u>	
	Total for question	6
	oevisie	

Question	Answer	Mark
Number		
7	Addition of words (order essential)	
	photon	1
	metal	1
	energy (allow mass, charge, momentum)	1
	(photo)electron	1
	work function (of the metal)	1
	Total for question	5

Question	Answer	Mark
Number		
8(a)	<u>Photon</u> energy is too small / less than work function (do not credit the frequency is less than the threshold frequency or electrons have not been given enough energy)	(1)
8(b)	Method 1: Use of intercept x-axis Use of $E = hf$ with $\frac{f = 10 \times 10^{14} \text{ Hz}}{10^{19} \text{ to convert to eV}}$ (this mark can be scored even if wrong frequency used) $\Phi = 4.1 \text{ (eV)}$ Unit given on paper so no ue and ignore reference to J	(1) (1) (1)
	OR Method 2:Use of Photoelectric Equation Use of hf = Φ + E _{max} with any pair of values Divide by 1.6 × 10 ⁻¹⁹ to convert to eV Φ = 4.1 - 4.5 (eV) Unit given on paper so no ue and ignore reference to J	(1) (1) (1) (max 3)
8(c)	Gradient of graph is Planck's constant/e (accept just Planck's constant)	(1)
8(d)	Graph parallel to original graph cutting X axis with a value less than 10	(1) (1)
	Total for question	7
	RevisionMade	