Photoelectric Effect QP1

1 The diagram shows the apparatus for an experiment on the photoelectric effect.

(a) A light is shone onto the cathode C and a potential difference is applied between the cathode and the anode A of the photocell. A sensitive ammeter is used to detect any current that flows.

The light is replaced by one of the same intensity, but a different photon energy. The results are shown in the table below.

	Photon energy/eV	Intensity of light/W m ⁻²	Work function/eV	Ammeter reading/A
First light	1.8	1.0	2.3	0.0
Second light	3.8	1.0	2.3	5.0×10^{-12}

Explain why the first ammeter reading is zero.

(2)

(b) The experiment is repeated using the same two photon energies but the intensities of the sources are increased. Add the new ammeter readings to the table below.

(2)

	Photon energy/eV	Intensity of light/W m ⁻²	Work function/eV	Ammeter reading/A
First light	1.8	4.0	2.3	
Second light	3.8	4.0	2.3	

(c) (i)	The cathode metal is lithium.	
	Express the work function of lithium in joules.	
	Work function of lithium = 2.3 eV	(2)
(ii)	$Work \ function =$ Ultraviolet radiation with photon energy of $4.8 \times 10^{-18} \ J$ is shone onto the lithium cathode.	J
	Calculate the maximum speed of the photoelectrons that are emitted.	(4)
	113000	
	Maximum speed =	

threshold frequency;
 the kinetic energy of the photoelectrons released depends on the frequency of the incident light and not its intensity.
Explain how these results support a particle theory, but not a wave theory of light.
Sill
296
R
(Total for Question = 6 marks)

*2 In 1921, Albert Einstein won the Nobel Prize for his work on the photoelectric effect.

photoelectrons are not released when the incident radiation is below a certain

The results of experiments on the photoelectric effect show that:

	Ultraviolet radiation incident on a zinc plate releases electrons from the zinc's surface. The energy of each incident photon is 5.4 eV. Zinc has a work function of 4.3 eV.	
(a) (i)	State the name given to this effect.	(1)
(ii)	State the speed of the photons.	(1)
(iii)	What is meant by the work function of a metal?	(1)
(b) An	electron is emitted from the surface of the zinc.	
(i)	Calculate the maximum kinetic energy of the electron in joules.	(3)
	Maximum kinetic energy =	
(ii)	Calculate the maximum speed of the electron.	(2)
	Maximum speed =	
(c) The	e intensity of the ultraviolet radiation is doubled.	
	te what happens to the maximum speed of an electron emitted from the zinc.	(1)

4 A gold leaf electroscope is used to detect very small amounts of charge. When the electroscope cap is negatively charged, electrons spread along the metal rod and the gold leaf so they both become negatively charged. The rod and leaf repel each other, so the gold leaf rises up.

A gold leaf electroscope can be used to demonstrate the photoelectric effect. A clean zinc plate is placed onto the cap of the electroscope and the plate and electroscope are charged negatively. Ultraviolet radiation is shore onto the zinc plate.

a) The gold leaf slowly falls.	
Explain, with reference to the work function of zinc, why this happens.	
	(4)
(b) Why is the effect not observed if the ultra riclet radiation is replaced by visib	
	(1)

(c) Ultraviolet radiation of wavelength 2.00×10^{-7} m is shone onto the zinc plate. Calculate the maximum speed of the electrons emitted from the plate.	
work function of zinc = $6.88 \times 10^{-19} \text{ J}$	
	(4)
5	
Maximum speed of electrons =	
(d) The source of ultraviolet radiation is moved further away from the zinc plate.	
State what will happen to the maximum speed of the electrons emitted from the	
plate. Justify your answer.	
Ro	(2)

5	The following passage describes some important aspects of the photoelectric effect. Insert the missing words.
	In the photoelectric effect, a single interacts with a single electron
	at the surface of a is
	conserved. This was summarised by Albert Einstein in the following equation
	$hf = \Phi + \frac{1}{2}mv^2$
	where $\frac{1}{2}mv^2$ is the maximum kinetic energy of the
	and Φ is the

Revision Made Simple Com

(Total for Question 18 = 5 marks)

6 The diagram shows apparatus used to investigate the photoelectric effect.

When ultraviolet light of a particular frequency is shone on the metal a current is produced. Current is produced for all values of potential difference when Q is positive. If Q is negative there is a p.d. beyond which there is no current. The magnitude of this p.d. is called the stopping potential $V_{\rm s}$.

The graph shows the results for a particular investigation with light intensity I.

Explain why there is a current for positive p.d.s, but none for rethan the stopping potential.	
	(5)
 _0`	
current incider intensi $-V_{\rm S}=0$ applied different different current incider intensi $-V_{\rm S}=0$	ty $2I$ It light ty I I potential
	nce
Explain the difference between the results for incident light intensity $2I$ for positive values of the applied potential potential $2I$ for positive values of the applied potential $2I$ for positive values $2I$ for posi	nsity <i>I</i> and
	nsity <i>I</i> and ntial difference.

(b) Calculate the value of $V_{\rm S}$.	
frequency of ultraviolet light = $1.20 \times 10^{15} \text{Hz}$ work function of metal = 4.26eV	
	(3)
sevision Made Simple cost =	

7 The photograph shows flame tests being carried out on some chemical compounds.

Flame tests are used to identify the elements present in some chemical compounds. The compounds produce different coloured flames when vaporised. This is because different elements produce spectra containing light with different wavelengths.

Sodium compounds produce a yellow flame because the spectrum of sodium includes light with frequency 5.1×10^{14} Hz.

Before the sodium compound is vaporised the electrons involved in producing the yellow light are in the energy level -5.14 eV.

(a) State what is meant by an energy level.	(1)
120	
(b) (i) Explain why light is emitted when the sodium compound is vaporised.	(2)
Sey	

–5.14 eV	
Calculate the energy of the other energy level involved in the emission of the yellow light. Add this energy level to the diagram and label it with the correct value.	
Add this energy level to the diagram and laber it with the correct value.	(4)
9/6	
Sill	
200	
No	
(c) Explain why different elements produce different spectra.	(2)
	(2)

(ii) The diagram represents the $-5.14~{\rm eV}$ energy level in a sodium atom.