Question	Answer		Mark
Number			
1(a)	Use of $v = f\lambda$	(1)	
	f = 7.3 Hz [accept 7.3 s ⁻¹ , do not accept fractions]	(1)	2
	Example of calculation		
	$f = 330 \text{ m s}^{-1} / 45 \text{ m}$		
	f = 7.3 Hz		
1(b)	Diffraction / it diffracts	(1)	
	Either an explanation of diffraction in general:		
	Idea that the waves spread out (not bending) OR a diagram showing		
	diffraction		
	OR		
	An explanation of why the tiger is heard:		
	diffraction is significant for an obstacle (not a gap) of a size similar to		
	the wavelength OR a diagram showing diffraction over a hill	(1)	2
	Total for question		4

	Total for question		4
	in ple.		
Question Number	Answer		Mark
2(a)	Tick in Ultrasound box only	(1)	1
2 (b)	A polarised wave is when the oscillations/vibrations are in one plane only which includes direction of travel (of the wave). Or A polarised wave is when the oscillations/vibrations are in one direction only which is perpendicular to the direction of travel (of the wave). Or Describes polarisation as a process where oscillations/vibrations in many planes are reduced to oscillations/vibrations in one plane [References to displacement are only acceptable in the context of varying displacement] Longitudinal waves oscillate/vibrate in one direction which is the direction of travel of the wave / parallel to the direction of travel of the wave.	(1)	
	Total for question		$\frac{2}{3}$

Question	Answer		Mark
Number			
3(a)	Use of $\sin i \times v_2 = \sin r \times v_1$	(1)	
~ /	$r = 90^{\circ}$ at critical angle	(1)	
	critical angle = 75°	(1)	
	Acceptable alternative:		
	Use of $_{1}\mu_{2} = v_{1} / v_{2}$	(1)	
	State sin $c = 1 / \mu$	(1)	
	$c = 75^{\circ}$	(1)	3
	($\mu = 1.036$, but look out for effects of rounding on calculated angle)		
	Example of calculation $\sin c / 1 = 1.96/2.03$ $c = 75^{\circ}$		
3(b)	It will be reflected (back into the core) / totally internally reflected	(1)	1
	Reflection back into core may be shown on the diagram (allow e.c.f for value of c from (a))		
3(c)	Most of the light will undergo repeated (total internal) reflection Or		
- (-)	most light continually strikes at greater than the critical angle Or	(1)	
	minimal light is lost through refraction		
	L'alternation de la terre a faite marche On De a l'infra de la recordina	(1)	
	Light reaches the bottom of the curtain Or Rays hitting the bottom will	(1)	2
	escape Or light hits the bottom at less than the critical angle		
	Total for question 18		6

	Total for question 18	6
	isionin	
Question	Answer	Mark
Number		
4(a)	Use of $v = f\lambda$ with $c = 3.00 \times 10^8 \text{ ms}^{-1}$ (1)	
	kHz to Hz (1)	
	wavelength = 1520 m (1)	3
	(accept 1500 m)	
	Example of calculation	
	$\lambda = 3 \times 10^8 \mathrm{ms}^{-1}/198000$	
	$\lambda = 1515 \text{ m}$	
4(b)*	(QWC – Work must be clear and organised in a logical manner using	
	technical wording where appropriate)	
	Correct mention of diffraction (not defraction) (1)	
	Large(r) wavelengths give large(r) diffraction or vv/ diffraction is the	
	spreading of wave(fronts) (1)	
	This idea applied to the context i.e.related to a building or hill, referencing	3
	size and lack of 'shadow'/more complete coverage (1)	3
	(1)	
	Total for question 12	6

Question Number	Answer	Mark
5(a)	Oscillations/vibrations occur in any number of directions/every direction (1)	
	which are perpendicular to the direction of wave travel /wave propagation/energy transfer (do not accept direction of wave) (1)	
	OR	2
	Oscillations/vibrations may occur in more than one plane (2)	
	(references to particles loses 1st mark	
	marks can be scored from a labelled diagram)	
5(b)*	(QWC – Work must be clear and organised in a logical manner using	
	technical wording where appropriate)	
	Use of polarising filter /Polaroid (not just filter) (1)	
	Rotation/turning of the filter (1)	•
	After 90° rotation (block) intensity changes (1)	3
	(Use of two filters and relative rotation 1 mark only)	
5(c)	Reflected light OR light from ice is (partially) polarised (1)	
	(Polarising) filters/lenses/glasses are at right ar.gies to (the plane of	
	polarisation of) the light	2
	(1)	
	[1 st mark must be about the reflected light being polarised]	
	(Answers which say that the sunglasses are polarising the light score 0/2)	
	Total for question 16	7
Question	Answer	Mark

Question Number	Answer	Mark
6(a)	Unpolarised light <u>escillates/vibrates</u> in many planes/ directions while polarised <u>oscillates/vibrates</u> in one plane/direction only OR labelled diagram	1
(b)	Filters at 90° to the (polarised) reflected light. sunglasses cut out the reflected light/polarise light/glare But not the light from the fish OR light from fish is unpolarised.	1 1 1 1
(c)	Sound is a longitudinal wave OR sound is not a transverse wave OR oscillations in one direction already OR only transverse waves can be polarised.	1
	Total for question	5

Question	Answer	Mark
Number		
7(a)	Coherent: Waves of constant phase relationship	1
	Standing wave: no (net) transfer of energy OR pattern of nodes and antinodes	1
	OR points of maximum displacement and zero displacement	
(b)	OOWC	
	Work must be clear and organised in a logical sequence	
	Calculation to show a path of 24 cm or 42 cm OR paths of 2 λ and 3.5 λ	1
	Path difference is $1 \frac{1}{2} \lambda$ OR divide path difference by 12	1
	Waves at X in antiphase /180° out of phase/ π radians out of phase	1
	destructive interference	1
	Example of answer	
	One path length = $18 \text{ cm} + 6 \text{ cm} = 24 \text{ cm}$	
	Other path length = $30 \text{ cm} + 12 \text{ cm} = 42 \text{ cm}$	
	Path difference = 42 cm - 24 cm = 18 cm	
	Number of wavelengths = $18/12 = 1.5$	
(c)	Food moves through hot and cold spots	1
	Over time period all parts of food receive similar amount of energy.	1
	Total for question	8
	Cilmp	
Question	Answer	Mark

Question	Answer	Mark
Number		
8 (a)	Diagram:	
	Smaller wavelength before gap	1
	Less diffraction and same wavelength	1
	:5	
(b)	Two sets of concentric circles	1
	equal spacing	1
	Identification of a line of points of destructive interference	1
	Identification of a line of points of constructive interference	1
(c)(i)	Attempt to use inverse relationship (e.g. $1.2 \times 0.60 =$ constant)	1
	Separation =1.8 mm	1
	Example of answer	
	1.2 = constant / 0.6	
	Constant = 0.72	
	Spacing $= 0.72/0.4 = 1.8 \text{ mm}$	
(ii)	(Initially bands) will get close together	1
	Eventually gap too large for overlap to occur, no fringes seen	
	OR reference to fringes produced providing overlap still occurs	1
	Total for question	10