Question	Answer	Mark
Number		
1(a)	Charges (1)	
	Movement of electrons from one plate to the other	2
	OR one plate becomes + the other - OR until pd	
	across C equals V _{supply} (1)	
1(b)(i)	Use of $Q = It$ (both 0.74 and 0.1/0.2) (1)	
	Recognition of milli and $\Delta t = 0.1$ (1)	2
	Eg $Q = 0.74 \times 10^{-3} \times 0.1 = 74 \times 10^{-6} \text{ C}$	
1(b)(ii)	Use of $V = Q/C$ (1)	
	Explains unit conversion (1)	2
	Eg $V = 278 \times 10^{-6} / 100 \times 10^{-6} = 2.78$ [accept μ/μ]	
1(c)(i)	Recall of <i>RC</i> (1)	
	Answer = 0.3 (s) (1)	
	Eg $T = 3000 \times 0.0001$	
	plus either	
	1/e or 37% of initial (1)	
	=0.23 - 0.27 (s) (1)	
	.0	
	or t/RC (1)	
	sub in formula $I = Ioe^{-t/RC}$ (1)	
	= 0.23 - 0.27 (s) (1)	
	Or Initial Tangant drawn (1)	
	Initial Tangent drawn (1)	
	Time constant = 0.2-0.3 (s) (1)	4
1(c)(ii)	$Plot \ln l / log l (1)$	4
1(c)(ii)	Plot Ln / / Log / (1) Against t (1) (dependent on first mark)	
	Against t (1) (dependent on first mark)	3
	Gradients of graph (1)	5
	Against I (1) (dependent on first mark)	
	should be straight line (1) (dependent on previous 2)	
	Total for question	13

Question Number	Answer		Mark
2(a)(i)	Discharges / loses charge	(1)	
	Idea that discharge is not instantaneous	(1)	2
	[e.g. over period of time, gradually, exponential]		2
2(a)(ii)	Decay curve starting on <i>y</i> -axis and not reaching x-axis	(1)	
	[no rise at the end]		
	Initial current marked 2 mA	(1)	
	X-axis labelled such that $T_{\frac{1}{2}} = 0.02$ to 0.06 s	(1)	3
2(a)(iii)	Same graph	(1)	
	On negative side of current axis/current in the opposite direction	(1)	2
2(b)	Use of $W = \frac{1}{2} CV^2 / \text{Use of } Q = CV \text{ and } W = \frac{1}{2} QV$	(1)	
	$W = 5 \text{ x} 10^{-4} \text{ J}$	(1)	2
			2
	Example of calculation V^{2}		
	$W = \frac{1}{2} (10 \times 10^{-6} \text{ F}) (10 \text{ V})^{2}$ W = 5 x10 ⁻⁴ J		
2(c)	Use of $\ln V/V_0 = (-) t/RC$ or $V = V_0 e^{-t/RC}$ with V and V_0 correct	(1)	
	t = 0.13 s	(1)	2
	Example of calculation		
	$\frac{1}{\ln(10 \text{ V}/0.7 \text{ V})} = t / 0.05 \text{ s}$		
	t = 0.13 s		
	Total for question		11

- question

Question Number	Answer		Mark
3(a)(i)	Capacitor charges up Or p.d. across capacitor becomes (equal to) p.d. of cell	(1)	
	Negative charge on one plate and positive charge on the other Or opposite charges on each plate Or movement of electrons from one plate and to the other (around the		
	circuit) (Reference to positive charges moving or to charge moving directly between the plates negates the second mark)	(1)	2
3(a)(ii)	As capacitor charges current decreases		
	Or As capacitor charges current drops to zero Or p.d. across capacitor becomes (equal to) p.d. of cell	(1)	
	No current through R (means no p.d.) Or $V_{\text{cell}} = V_{\text{capacitor}} + V_{\text{resistor}}$	(1)	2
*3(b)	(QWC – Work must be clear and organised in a logical manner using technical wording where appropriate)		
	See Q=CV	(1)	
	As C increased then charge flows (Or more charge stored) on capacitor So p.d. across R	(1) (1)	
	Charge flow / current /output signal reversed when plates move apart	(1)	
	Or S O CH	(1)	
	See Q=CV As C increased p.d. across capacitor decreased	(1) (1)	
	So p.d. across R must increase	(1)	
	p.d. reverses when plates move apart	(1)	4
3(c)	Use of time constant =RC Or attempt to find half life	(1)	
	Time constant = 0.005 (s) Or t $\frac{1}{2} = 0.0035$ (s)	(1)	
	Use of $T = 1/f$ (to give $T = 0.05$ s for the lowest audible frequency) Capacitor completes discharging/charging during cycle of signal	(1)	4
	Capacitor completes discharging/charging during cycle of signal	(1)	4
	(last mark can only be gained if supported by calculations)		
	(f = 1/CR may be used to find the 'frequency of the microphone', rather		
	than time. In this case candidates may just calculate $f = 200$ Hz rather than a time. Only first 3 marks are available)		
	Example of calculation		
	$RC = 10 \times 10^{6} \ \Omega \times 500 \times 10^{-12} \ F$ RC = 0.005 s		
	F = 1/T = 1/20 = 0.05 s		
	Total for question		12

Question Number	Answer		Mark
4 (a)	Use of $Q = CV$ Q = 0.18 C	(1) (1)	2
	Example of calculation $Q = 150 \times 10^{-6} \text{ F} \times 1200 \text{ V}$ Q = 0.18 C		
4(b)	Use of $W = \frac{1}{2} CV^2$ Or of $W = \frac{1}{2} QV$ Or of $W = \frac{1}{2} Q^2/C$ W = 110 J Allow ecf from (a) if $\frac{1}{2} QV$ or $\frac{1}{2} Q^2/C$ used	(1) (1)	2
	Example of calculation $W = \frac{1}{2} \times 150 \times 10^{-6} \text{ F} \times (1200 \text{ V})^2$ W = 108 J		
4(c)(i)	$R = 86 (\Omega)$	(1)	1
	Example of calculation R = V/I = 1200 V / 14 A $R = 85.7 \Omega$		
4(c)(ii)	$Q = 0.25 Q_0 \text{ Or } Q = 0.045 \text{ C}$ Use of <i>RC</i> (0.013 s) Use of <i>Q</i> = <i>Q</i> ₀ e ^{-t/RC} to give <i>t</i> = 0.018 s (show that value will give <i>t</i> = 0.019 s)	(1) (1) (1)	3
	[Use of ln 4 gives the correct answer if the – sign is ignored, scores 1 for use of RC use of $^{3}4Q \rightarrow 3.7 \times 10^{-3}$ s scores 1 mark]		
	Or Use of RC Use of $2 \times 0.69 \times RC$ t = 0.018 s		
	Example of calculation $Q = 0.25 Q_0$ $Q = Q_0 e^{-t/RC}$ $0.25 Q_0 = Q_0 e^{-t/RC}$ $\ln (0.25) = -t/(86 \Omega \times 150 \times 10^{-6} \text{ F})$		
4(c)(iii)	t = 0.0178 s Same charge (flows for shorter time)		
	OR (Same charge flows for) shorter time	(1)	1
	Total for question 15		9

Question Number	Answer		Mark
5(a)(i)	t = 0, capacitor uncharged therefore 12V across <i>R</i> Or at $t = 0$, the capacitor begins to charge [accept 'when the switch is closed' for $t = 0$]	(1)	
	(capacitor and resistor in series so) $V_{\rm R}$ decreases as $V_{\rm C}$ increases Or $V_{\rm R} + V_{\rm C} = \text{constant}$		
	Or as charge on capacitor increases, current decreases so $V_{\rm R}$ decreases. Or numerical justification of exponential decrease	(1)	2
5(a)(ii)	Exponentially increasing graph with decreasing gradient Max value $10.4 - 11.2$ V at $t = 50$ s	(1) (1)	2
5(b)(i)	Indicates that t 37% of initial $V_{\rm R}$ Or $1/e$ of initial $V_{\rm R}$ read time off graph Or	(1) (1)	
	Uses graph to find time for p.d.to half Equates this to 0.69 <i>RC</i> where <i>RC</i> equals the time constant Or	(1) (1)	
	draw a tangent at $t = 0$ value is where tangent cuts x-axis. Or	(1) (1)	
	draws a tangent at any time value is difference between where tangent cuts x-axis and time where tangent was drawn.	(1) (1)	
	Or plot a graph of ln V against t Time constant is gradient of graph	(1) (1)	
	Or take a pair of values from graph and sub into exponential equation calculate RC which is time constant	(1) (1)	2
5(b)(ii)	Use of $V = IR$ $R = 48 \text{ k}\Omega$	(1) (1)	
	Use of t and their value of R to find C in $t = RC$ C = 520 µF (consistent with their values)	(1) (1)	
	Or Use $C=It/V$ with $V=12$ V and $t=25$ s $C=520 \mu$ F	(1) (1)	
	Use of t and their value of C to find R Or use of $V = IR$ to find R R = 48 k Ω	(1) (1)	4
	$\frac{\text{Example of calculation}}{R = 12 \text{ V} / 0.25 \times 10^{-3} \text{ A} = 48 \text{ k}\Omega$		
	$t = 48 \times 10^{3} \ \Omega \times C$ $C = 25 \ s / 48 \times 10^{3} \ \Omega$ $C = 520 \ \mu F$		
	Total for Question		10

Question Number	Answer	Ma	.rk
6(a)	Use of $T = RC$ (1 T = 0.3 s (1)		2
	Example of calculation $T = RC = 1500 \ \Omega \times 200 \times 10^{-6} \text{ F}$		
	T = 0.3 s		
6(b)	B5 = $(6V - E4)/1.5$ (k Ω) Or I = $(E-V)/R$		
	$\mathbf{Or} \ \mathbf{I} = (6.0 - 3.33)/1.5 \tag{1}$)	
	Correct units or comment about mA and $k\Omega$ (1))	2
	(allow 1 mark for B5 =C5/(A5-A4) and 1 mark for use of exponential equation)		
6(c)(i)	3 points plotted accurately $\pm \frac{1}{2}$ small square(1)Line of best fit drawn (smooth by eye)(1)		2
6(c)(ii)	Initial tangent drawn(1) $t = 0.19 \text{ s} -0.26 \text{ s}$ (1)		
	Or 37% of initial current found $t = 0.24 \text{ s} - 0.26 \text{ s}$ (1)		
	Or half life determined and use of half life = 0.693 RC (1) t = 0.23 s -0.26 s (1)		
	Or uses a pair of points off the graph in exponential equation (1)	
	$t = 0.24 \text{ s} - 0.26 \text{ s} \tag{1}$) 2	2
6(c)(iii)	Reduce the time interval (1) 1	1
*6(d)	Reference to $I = I_0 e^{-t/RC}$ Or $\ln I = \ln I_0 - t/RC$ Or states that there is exponential relationship between <i>I</i> and <i>t</i> (1))	
	Plot $\ln I$ against t Or $\ln (I/I_0)$ against t (1))	
	The time constant = $-1/\text{gradient}$ (1)	3
	Total for Question	1	2