Question	Answer	Mark
Number		
1	Current in coil generates magnetic field (1)	
	Current drops/decreases (1)	
	Change of flux [accept flux cut] (1)	
	Rapid/quick/short time (1)	
	Large emf/200 V induced(1)	
	Field/flux linkage large due to many turns (1)	4 max.
	Total for question	4

Question	Answer	Mark
Number		
2(a)(i)	measured thickness of lead 4-5 mm (1)	
	measured radius 32 - 38 mm (1)	
	Value between 38 - 57 mm (1)	
		3
	Eq actual radius - 35 mm x 6 mm/4 5 mm	U
(a)(ii)	Use of $p = Bqr$ [any two values sub] (1)	
	Answer range 9.1 x 10 ⁻²¹ - 1.4 x 10 ⁻²⁰ N s or kg m s ⁻¹	2
	[allow ecf](1)	
(b)	Track gets more curved above lead / r smaller above	
	lead (1)	
	Must be slowing down / less momentum / loses	3
	energy (1)	
	Up [dependent on either answer above] (1)	
(c)	Into name (1)	1
	[ocf out of page if down in b]	
(-1)(:)	$\begin{bmatrix} eci & out & oi & page if & own if if b \end{bmatrix}$	
(a)(I)	Division by 9.11 x 10 ⁻ kg (1)	
	Answer range 1.0 - 1.6 x 10 ¹⁰ m s ⁻¹ (1)	2
(d)(ii)	greater than speed of light (1)	
	(impossible) so mass must have increased (1)	2
	Total for question	13

Question	Answer	Mark
Number		
3(a)	Indication of vertical force(s) on sides AB or CD (1)	
	[up or down is equivalent to vertical]	
	Opposite vertical forces on AB and CD (1)	
	Indication of anticlockwise rotation (1)	4
	[Allow full credit for a written description]	
	(Commutator) switches current direction (1)	
3(b)*	(QWC – Work must be clear and organised in a logical manner using	
	technical wording where appropriate)	
	<u>Flux</u> (linkage) changes / <u>flux</u> is cut (1)	
	Mention of <u>induced</u> e.m.f [allow induced voltage] (1)	
	E.m.f increases with speed (1)	
	Mention of Lenz's Law (1)	Max 4
	(e.m.f./voltage) opposes current [not "reduces"] (1)	Max 4
	Total for question 3	8

Number (QWC – Work must be clear and organised in a logical manner using technical wording where appropriate) *4 (QWC – Work must be clear and organised in a logical manner using technical wording where appropriate) Current in a wire produces a magnetic field (1) Identifies direction of B field around either wire (1) Eg Around wire so that it is into the page at the bottom of wire Or clockwise when looking from left (1) (Each) wire is in the magnetic field of the other wire (1) A current-carrying wire in a magnetic field experiences a force (1) Mention of Fleming's left hand rule (accept motor rule) Or identifies neutral (1)	Question	Answer		Mark
 *4 (QWC – Work must be clear and organised in a logical manner using technical wording where appropriate) Current in a wire produces a magnetic field (1) Identifies direction of B field around either wire [Eg Around wire so that it is into the page at the bottom of wire Or clockwise when looking from left (Each) wire is in the magnetic field of the other wire (1) A current-carrying wire in a magnetic field experiences a force (1) Mention of Fleming's left hand rule (accept motor rule) Or identifies neutral 	Number			
wording where appropriate)(1)Current in a wire produces a magnetic field(1)Identifies direction of B field around either wire Eg Around wire so that it is into the page at the bottom of wire Or clockwise when looking from left(1)(Each) wire is in the magnetic field of the other wire (Each) wire is in the magnetic field of the other wire(1)A current-carrying wire in a magnetic field experiences a force(1)Mention of Fleming's left hand rule (accept motor rule) Or identifies neutral	*4	(QWC – Work must be clear and organised in a logical manner using technical		
Current in a wire produces a magnetic field(1)Identifies direction of B field around either wire Eg Around wire so that it is into the page at the bottom of wire Or clockwise when looking from left(1)(Each) wire is in the magnetic field of the other wire(1)A current-carrying wire in a magnetic field experiences a force(1)Mention of Fleming's left hand rule (accept motor rule) Or identifies neutral		wording where appropriate)		
Identifies direction of B field around either wire(1)Eg Around wire so that it is into the page at the bottom of wire Or clockwise when looking from left(1)(Each) wire is in the magnetic field of the other wire(1)A current-carrying wire in a magnetic field experiences a force(1)Mention of Fleming's left hand rule (accept motor rule) Or identifies neutral		Current in a wire produces a magnetic field (1)	
Eg Around wire so that it is into the page at the bottom of wire Or clockwise when looking from left (1) (Each) wire is in the magnetic field of the other wire (1) A current-carrying wire in a magnetic field experiences a force (1) Mention of Fleming's left hand rule (accept motor rule) Or identifies neutral (1)		Identifies direction of B field around either wire	1)	
 (Each) wire is in the magnetic field of the other wire A current-carrying wire in a magnetic field experiences a force Mention of Fleming's left hand rule (accept motor rule) Or identifies neutral 		Eg Around wire so that it is into the page at the bottom of wire Or clockwise when looking from left		
A current-carrying wire in a magnetic field experiences a force(1)Mention of Fleming's left hand rule (accept motor rule) Or identifies neutral		(Each) wire is in the magnetic field of the other wire	1)	
Mention of Fleming's left hand rule (accept motor rule) Or identifies neutral		A current-carrying wire in a magnetic field experiences a force	1)	
		Mention of Fleming's left hand rule (accept motor rule) Or identifies neutral		
point between wires. (1)		point between wires.	1)	
(Marks 1 and 2 and a labelled neutral point could be communicated using the diagram. For neutral point accept 'fields cancel' but not 'fields in opposite 5 directions')		(Marks 1 and 2 and a labelled neutral point could be communicated using the diagram. For neutral point accept 'fields cancel' but not 'fields in opposite directions')		5
Total for exection 4		Total for quartier 4		5

Question	Answer		Mark
Number			
5(a)	Reference to magnetic flux (linkage)	(1)	
	Magnet vibrates/moves	(1)	
	Flux/field through the coil changes	(1)	
	<u>Induces</u> emf / pd	(1)	4
5(b)(i)	Use of $T = 2\pi/\omega$ for a revolution	(1)	
	$\omega = 3.5 \text{ rad s}^{-1}$	(1)	2
	Example of Calculation		
	$\omega = 33 \times 2\pi \text{ rad}/60 \text{ s}$		
	$\omega = 3.5 \text{ rad s}^{-1}$		
5(b)(ii)			
	$\omega / T / f$ remains constant	(1)	
	$v = r\omega \text{ Or } C = 2 \pi r$	(1)	
	So as the stylus moves towards the centre		
	(tangential/linear) speed/velocity Or path length (per rotation)		
	gets less	(1)	3
	Total for question15		9
	S		

Question Number	Answer		Mark
6*(a)	(QWC – Work must be clear and organised in a logical manner using technical wording where appropriate) Max 6 from		
	Reference to changing/cutting of field/flux	(1)	
	Induced e.m.f. proportional to rate of change/cutting of flux (linkage) (accept equation)	(1)	
	Initial increase in e.m.f. as the magnet gets closer to the coil	(1)	
	Identifies region of negative gradient with magnet going through the coil	(1)	
	Indication that magnet's speed increases as it falls	(1)	
	Negative (max) value > positive (max) value (this mark is dependent on awarding marking point 5)	(1)	
	Time for second pulse shorter (this mark is dependent on awarding marking point 5)	(1)	
	The areas of the two parts of the graph will be the same (since N ϕ constant)	(1)	6

Question	Answer		Mark
Number			
*7	(QWC – Work must be clear and organised in a logical manner using		
	technical wording where appropriate)		
	Curvature at Q greater than at P, therefore slower at Q		
	Or radius at Q smaller than at P, therefore slower at Q	(1)	
	(accept less momentum or kinetic energy for slower)		
	Particle travels $P \rightarrow Q$		
	Or (left) to right	(1)	
	Force is: upwards/ towards A / towards centre of curvature		
	Or current is $\mathbf{Q} \rightarrow \mathbf{P}$ Or current to the left	(1)	
	Particles have negative charge (consistent with their direction)		
	(Candidates who say charge is +ve can score MP4 if they say the direction		
	is $Q \rightarrow P$)	(1)	4
	Total for Question 7		4

Question	Answer		Mark
Number			
8 (a)	$B_{\rm v} = 4.0 \times 10^{-5} {\rm T}$	(1)	1
	Example of calculation $\frac{1}{2}$		
	$B_v = 4.4 \times 10^{-5} \text{ T} \times \cos 25^{\circ}$		
	$B_{\rm v} = 5.99 \times 10^{-1}$		
8(b)(i)	Conductor/wing moving at an angle to magnetic field Or the vertical		
0(0)(1)	component is at right angles to the wing)	(1)	
	Hence force on electrons (in conductor) is at right angles to both direction		
	of motion and magnetic field	(1)	
	Or		
	Reference to cutting / change of (magnetic) flux	(1)	
	So an e.m.f. is induced	(1)	2
0(1)(1)	V on the right hand wing when looking at the diagram	(1)	1
8(b)(11)	A on the right hand wing when looking at the diagram	(1)	1
8(b)(iii)	The build-up of charge creates an electric field	(1)	
0(0)(11)	This creates a force in the opposite direction to the magnetic force	(1)	2
	(A statement that the rate of change of flux is constant so that the e.m.f. is		
	constant scores 1 mark)		
8(b)(iv)	(Magnetic) field will be parallel to the wings		
	Or motion of plane at right angles to (magnetic) field Or reference to E - Blain 0, with sin 0 = 0	(1)	
	Or reference to $F = BIIsin\theta$ with $\sin\theta = 0$	(1)	
	So no force gate (in the direction of the wings) on the (free) electrons		
	Or wings not cutting flux, so no e m f across wing tips	(1)	2
	or wings not cutting nux, so no c.m.n. across wing ups.	(1)	-
	Total for Ouestion 8		8
		-	
	\sim		
	Y		
	Ť		

Question	Answer		Mark
Number			
9(a)(i)	$v_v = 7.5 \times 10^6 \mathrm{m \ s^{-1}}$	(1)	1
	Ensure la seferal de la constante de la consta		
	Example of calculation $\frac{8.0 \times 10^6}{10^6}$		
	$v_v = 8.0 \times 10^{6} \text{ m s}^{-1} \times \cos 20^{6}$		
(-)(!!)	$V_v = 7.5 \times 10^6 \text{ m/s}^{-1}$	(1)	1
(a)(11)	$v_h = 2.7 \times 10^{\circ} \text{ m/s}$	(1)	1
	(apply up only once in (i) and (ii))		
	(appry de only once in (i) and (ii))		
	Example of calculation		
	$\frac{12 \times 10^6 \text{ m s}^{-1} \times \cos 70^6}{10^6 \text{ m s}^{-1} \times \cos 70^6}$		
	$v_h = 0.0 \times 10^6 \text{ m s}^{-1}$		
(a)(;;;)	$V_h = 2.7 \times 10^{-11}$ m s	(1)	
(a)(III)	Circular motion in the vertical plane/direction	(1)	
	No force is herizontal direction Or uniform motion in herizontal direction		
	Or constant valuative in horizontal direction	(1)	2
	or constant velocity in nonzontal direction	(1)	2
	(For these marks, candidates must refer to vertical/perpendicular and		
	horizontal/narallal)		
(b)(i)		(1)	
(0)(1)	See $DQr = mv$	(1)	
	Use of perpendicular component of velocity from $(a)(1)$	(1)	
	$r = 2.8 \times 10^{-1} \text{ (m)}$	(1)	- 3
	Example of coloulation		
	$\frac{1}{2}$		
	r = mv/Bev = mv/Be		
	$r = (9.11 \times 10^{-6} \text{ kg} \times 7.5 \times 10^{-6} \text{ m s}^{-6}) / (0.015 1 \times 1.6 \times 10^{-6} \text{ C})$		
(-) (-)	$r = 2.8 \times 10^{\circ} \text{ m}$		
(b)(ii)	Use of $T = 2\pi r/v$ ecf r from (b)(i)	(1)	
	$T = 2.3 \times 10^{-9} \text{ s}$ (show that gives $2.5 \times 10^{-9} \text{ s}$)	(1)	2
	[use of $8.0 \times 10^{\circ}$ m s ⁻¹ is incorrect and can score 1 for 'use of']		
	Example of calculation		
	$T = (2\pi \times 2.8 \times 10^{-3} \text{ m}) / 7.5 \times 10^{6} \text{ m s}^{-1}$		
	$T = 2.3 \times 10^{-9} \mathrm{s}$		
(b)(iii)	Use of distance = speed × time with v_h from (a)(ii) and T from (b)(ii)	(1)	
	Distance = 6.2×10^{-3} m	(1)	2
	(use of 2.5×10^{-9} s gives 6.8×10^{-3})		
	Example of calculation		
	Distance = $2.7 \times 10^6 \text{ m s}^{-1} \times 2.3 \times 10^{-9} \text{ s}^{-1}$		
	Distance = 6.2×10^{-3} m		
(c)	The circles would have a smaller radius	(1)	
	Distance between adjacent loops would increase	(1)	2
	Total for Question		13