Question Number	Answer		Mark
1	Use of $W = mg$ (1)		
	Use of $\mathbf{F} = \frac{kQ_{2}Q_{2}}{m^{2}}$ Or Use of $\mathbf{F} = \frac{Q_{2}Q_{2}}{4\pi\epsilon_{0}r^{2}}$ (1) F = 8990 N and $W = 9810$ N Or $r = 957$ m for $Q = 1$ C and $m = 1$ tonne	1	
	Or $Q = 1.05$ C for $r = 1$ km and $m = 1$ tonne		
	Or $m = 916$ kg for $Q = 1$ C and $r = 1$ km (1)		
	Correct comparison and conclusion using their calculated values (1) E.g. The statement isn't true because the force is less than the weight at that distance.		4
	Example of calculation $W = 1000 \text{ kg} \times 9.81 \text{ N kg}^{-1}$ $9810 \text{ N} = 8.99 \times 10^9 \text{ N m}^2 \text{ C}^{-2} \times 1 \text{ C} \times 1 \text{ C} \div r^2$ r = 957 m		
	Total for question 1		4
	Revisionmade		

Question	Answer		Mark
Number			
2(a)	Electrons emitted from hot metal (surface)		
	Or states thermionic emission	(1)	
	Idea that electrons accelerated by electric field produced by charge on the anode	(1)	2
	(e.g. Electrons accelerated by anode; electrons attracted to positive charge;		
	electrons attracted to anode)		
2(b)	Use of $W = QV$	(1)	
	Use of $E_{\rm k} = \frac{1}{2} mv^2$	(1)	-
	$v = 2.72 \times 10^7 \text{ m s}^{-1}$	(1)	3
	Example of calculation		
	$W = 1.6 \times 10^{-15} \text{ C} \times 2100 \text{ V} = 3.36 \times 10^{-10} \text{ J}$		
	$3.36 \times 10^{-10} \text{ J} = \frac{1}{2} \times 9.11 \times 10^{-51} \text{ kg} \times v^2$		
	$v = 2.72 \times 10^7 \text{ m s}^{-1}$		
2 (c)	Straight vertical lines, at least 3, equally spaced, touching both plates	(1)	-
	Downward direction	(1)	2
2(d)(i)	Use of $E = V/d$	(1)	
	Use of $F = EQ$	(1)	2
	$F = 1.8 \times 10^{15} (N)$	(1)	3
	Example of calculation $E = 550 \text{ M}/(0.05 \text{ m} - 11.000 \text{ M} \text{ m}^{-1})$		
	E = 550 V / 0.05 m = 11000 V m $E = 11000 \text{ V} \text{ m}^{-1} \times 1.6 \times 10^{-19} \text{ C}$		
	$F = 11000 \text{ V III} \times 1.0 \times 10 \text{ C}$ $F = 1.76 \times 10^{-15} \text{ N}$		
	$\frac{F - 1.70 \times 10}{\text{M}} \text{ N}$	(1)	
2(a)(l)	Use of $v = s/t$	(1)	
	Use of $y = 3/t$ Use of $y = ut + \frac{1}{2}at^2$ with $u = 0$	(1)	
	s = 0.020 m	(1)	4
	5 = 0.020 m	(1)	•
	Example of calculation		
	$\overline{a = F/m} = 1.76 \times 10^{-15} \text{ N} / 9.11 \times 10^{-31} \text{ kg} = 1.93 \times 10^{-15} \text{ m s}^{-2}$		
	$t = 0.1 \text{ m} / 2.2 \times 10^7 \text{ m s}^{-1} = 4.55 \times 10^{-9} \text{ s}^{-9}$		
	$s = \frac{1}{2} \times 1.93 \times 10^{15} \text{ m s}^{-2} \times (4.55 \times 10^{-9} \text{ s})^2$		
	s = 0.020 m		
	Total for question 2		14

Question	Answer		Mark
Number			
*3	(QWC- Work must be clear and organised in a logical manner using		
	technical wording where appropriate		
	May 4		
	Uniform electric field (between plates)	(1)	
	Force due to E or idea of attraction/repulsion	(1)	
	(Ball has an) acceleration (not an increasing velocity)	(1)	
	Which is constant/uniform (can be with reference to increasing	(-)	
	velocity)	(1)	
	Vertical line/ + and – values shows change in direction	(1)	
	Inelastic collision/less energy after impact	(1)	4
	Total for question 3		4
	Revisionmadesimple.		

Question	Answer		Mark
Number 4(a)	Use of $E = kQ/r^2$ with $Q = 4.0 \times 10^{-13}$ (C) Their <i>E</i> value × cos 49 2 components added E = 0.043 N C ⁻¹ (Candidates who calculate Force can score MP2 and MP3 only) Example of calculation Resultant field = 2 × (kQ/r^2) cos 49 $E = (2 \times 8.99 \times 10^9$ N m ² C ⁻² × 4.0 × 10 ⁻¹³ C × 0.656)/0.33 ² E = 0.043 N C ⁻¹	(1) (1) (1) (1)	4
4(b)	At A fields are equal and opposite (in direction) Explains decrease in terms of E α 1/r ² .	(1) (1)	2
4(c)(i)	Use of $F = EQ$ with $Q = 3.2 \times 10^{-19}$ (C) Use of $F = ma$ $a = 2.1 \times 10^{6} \text{ m s}^{-2}$ Example of calculation EQ = ma a = EQ/m $a = (0.0 44 \text{ N C}^{-1} \times 3.2 \times 10^{-19} \text{ C}) / 6.6 \times 10^{-27} \text{ kg}$ $a = 2.1 \times 10^{6} \text{ m s}^{-2}$	(1) (1) (1)	3
4(c)(ii)	Graph with initial velocity marked as 1500 (m s ⁻¹) Continuously increasing speed Maximum positive gradient at C and graph extends beyond C Example of graph Speedlows ⁻¹ 1500 dislowe along aris from H	(1) (1) (1)	3
	Total for question 4		12

Question	Answer		Mark
Number			
5(a)	Using Equation		
	$F - kg m s^{-2}$	(1)	
	Q - As	(1)	
	$\epsilon_0 - A^2 kg^{-1} m^{-3} s^4$	(1)	
	Or using the unit of F m ⁻¹		
	C – A s		
	$J - kg m^2 s^{-2}$	(1)	
	$\varepsilon_0 - A^2 kg^{-1} m^{-3} s$	(1)	
		(1	3
5(b)	Diagram mark for parallel plate: a minimum of 3 parallel equispaced		
	lines touching plates (ignore edge effect)	(1)	
	Diagram mark for point charge: minimum of 4 equispaced radial lines		
	touching charged point	(1)	
	Direction of fields correct for both diagrams consistent with charges	(1)	
	labelled		
		(1)	
	Parallel plate - field strength same at all points	, í	
	Point charge - field strength decreases with (increasing) distance from point	(1)	5
	Or obeys inverse square law		-
5(c)	Use of $F_{\rm E} = {\rm k}Q_1Q_2/r^2$	(1)	
	Use of $W = mg$	(1)	
	Resolve vertically $T\cos\theta = mg$ and Resolve horizontally $T\sin\theta = F_{\rm E}$	(1)	
	Attempt to combine components to give $\tan \theta$ ($\tan \theta = F_{\rm E}/mg$)	(1)	
	$\theta = 41^{\circ} \text{ to } 42^{\circ}$	(1)	
	T = 0.035 N	(1)	
		, í	
	Or		
	Use of $F_{\rm E} = {\rm k}Q_1Q_2/r^2$	(1)	
	Use of $W = mg$	(1)	
	Use of Pythagoras to find tension force	(1)	
	Tan $\theta = F_{\rm E}/mg$ Or $\cos \theta = mg/T$ Or $\sin \theta = F_{\rm E}/T$	(1)	
	$\theta = 41^{\circ} \text{ to } 42^{\circ}$	(1)	
	T = 0.035 N	(1)	6

(if they halve the separation or halve the electric force they can still get MP1 and so could score MP1,2, 3 & 4)

Example of calculation
Weight of sphere = $0.0027 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 0.026 \text{ N}$
Electric force $F_{\rm E} = {\rm k}Q_1Q_2/r^2$
$= 8.99 \times 10^{9} \text{N m}^{2} \text{ C}^{-2} \times (4.0 \times 10^{-7} \text{ C})^{2} / 0.25^{2} \text{ m}^{2} = 0.023 \text{ N}$
Vertically $T \cos \theta = mg$
Horizontally $T \sin \theta = F_{\rm E}$
Tan $\theta = F_{\rm E}/{\rm mg} = 0.023 \text{ N}/ 0.026 \text{ N}$
$\theta = 41^{\circ}$
sub into vertical equation
$T = mg/\cos\theta = 0.026 \text{ N}/\cos 41$
T = 0.034 N

Total for question 5

14