Thermodynamics MS1

Question Number	Answer		Mark
1(a)	Any two from:		
- ()	Air behaves as an ideal gas	(1)	
	Temperature (in the lungs) stays constant	(1)	
	Implication of no change in mass of gas	(1)	(max 2)
1(b)(i)	Use of p=m/V	(1)	
	Correct answer $(1.3 \times 10^{-4} \text{ kg s}^{-1})$	(1)	(2)
	Example of calculation:		
	$m = V.\rho = 2.5 \times 10^{-4} m^3 \times 1.2 kg m^{-3} = 3 \times 10^{-4} kg$		
	$\frac{\Delta m}{\Delta t} = 3 \times 10^{-4} \text{ kg} \times \frac{25}{60 \text{ s}} = 1.25 \times 10^{-4} \text{ kg} \text{ s}^{-1}$		
1(b)(ii)	Use of $\Delta E = mc\Delta \theta$	(1)	
	Correct answer (2.2 W) ecf	(1)	(2)
	Example of calculation:		
	$P = 1.25 \times 10^{-4} \text{ kg s}^{-1} \times 1000 \text{ J kg}^{-1} \text{ K}^{-1} \times (37.6 - 20.0) \text{ K} = 2.2 \text{ W}$		
	Total for question 1		(6)

Question	Answer		Mark
Number			
2(a)	Use of $pV = NkT$	(1)	
			_
	T = 870 (K) OR $p = 12.4$ (atmospheres)	(1)	2
	If final pressure is given as 1.24×10^6 Pa, then just "use of" mark		
	Example of calculation:		
	$_{T}$ pV 12×1.0×10 ⁵ Nm ⁻² ×3.00×10 ⁻⁴ m ³		
	$I = \frac{1}{Nk} = \frac{1}{3 \times 10^{22} \times 1.38 \times 10^{-23} \text{ JK}^{-1}} = 809.0 \text{ K}$		
	OR		
	$NkT = 3 \times 10^{22} \times 1.38 \times 10^{-23} \text{ K}^{-1} \times 900 \text{ K}$		
	$p = \frac{1}{V} = \frac{1}{2 \times 10^{-4} \text{ m}^3}$		
	V 3×10 III		
	1.24×10^{6} Pa		
	$\therefore p = 1.24 \times 10^{\circ} \text{Pa} = \frac{12.1410^{-4} \text{Pa}}{3 \times 10^{-4} \text{Pa}} = 12.4$		
2(h)*	5×10 Fa (OWC Work must be clear and organized in a logical manner using	r	
2(0)	(QWC - Work must be creat and organised in a logical mainer using technical wording where appropriate)		
	technical wording where appropriate)		
	Atoms/molecules would gain energy	(1)	
	<u>rions molecules</u> would gain energy	(1)	
	Atoms/molecules would escape from the liquid OR liquid propellant		
	would vaporise / turn into gas OR the amount of gas in can would		
	increase	(1)	
	Pressure would increase due to both temperature/energy increase an	d	
	increase in amount of gas		
	OR pressure would increase more for the same temperature increase		
	OR pressure would be greater than 12 atmospheres before 900 K	(1)	
			Max 3
	Can would explode before 900 K reached	(1)	
	Total for question 2		5

Question	Answer	Mark
Indumber		
3(a)	Use of $P=IV$ (1)	
	I = 9.1 A (1)	2
	Example of calculation	
	$P_{2100W} = 0.12$ A	
	$I = \frac{1}{V} = \frac{1}{230 V} = 3.15 H$	
3(b)(i)	Use of $\Delta E = mc\Delta\theta$ (for $t = 1$ s) (1)	
	$\theta = 51^{\circ} \text{C or } 324 \text{ K} \tag{1}$	2
	Example of calculation	
	$\frac{12\lambda aniple of calculation}{\Lambda E}$ 21001	
	$\Delta \theta = \frac{1}{100} = \frac{1}{0.000} = \frac{1000}{0.0000} = 30.6 \ ^{\circ}C$	
	<i>mc</i> 0.066 kg × 1010 j kg - °C -	
	$\theta = 30.6 + 20 = 50.6 ^{\circ}\text{C}$	
3(b)(ii)	Thermal energy (is transferred) to <u>air</u> (molecules) (1)	
	Kinetic energy $[E_{1}]$ of (air) molecules is increased (1)	2
	(\mathbf{I})	
	Total for quastion 2	4
	Total for question 3	0

Question Number	Answer		Mark
4(a)(i)	Use of $p/T=$ a constant $p = 1.8 \times 10^5$ (Pa) (no ue) Example of calculation $\frac{p_2}{T_2} = \frac{p_1}{T_1}$ $\therefore p_2 = \frac{(273+40) \text{ K} \times 1.65 \times 10^5 \text{ Pa}}{(273+20) \text{ K}} = 1.76 \times 10^5 \text{ Pa}$	(1) (1)	2
4(a)(ii)	Air behaves as an ideal gas / mass of air remains constant / number of molecules remains constant/same amount of air/number of moles remains constant/no air escapes	(1)	1
4(b)	Use of $V=4\pi r^{3}/3$ Use of $pV = NkT$ $N = 1.5 \times 10^{22}$ Example of calculation $V = \frac{4\pi r^{3}}{3} = \frac{4\pi (\frac{0.225 \text{ m}}{2})^{3}}{3} = 5.96 \times 10^{-3} \text{ m}^{3}$ $N = \frac{pV}{kT} \therefore \Delta N = \frac{V(p_{2} - p_{1})}{kT}$ $\Delta N = \frac{5.96 \times 10^{-3} \text{m}^{3} (1.76 \times 10^{5} - 1.65 \times 10^{5}) \text{ Pa}}{1.38 \times 10^{-23} \text{ J K}^{-1} \times 313 \text{ K}}$ $\Delta N = 1.52 \times 10^{22}$	(1) (1) (1)	3
	Total for question 4		6

Question Number	Answer		Mark
5(a)	Use of $\Delta E = mc\Delta\theta$ Energy = 780 J	(1) (1)	2
	Example of calculation $\Delta E = 34 \times 10^{-3} \text{ kg} \times 490 \text{ J kg}^{-1} \text{ K}^{-1} \times (100 - 53) \text{ K} = 783 \text{ J}$		
5(b)	Heat / thermal energy is transferred from the sphere to the wax	(1)	
	Idea that the lead sphere has insufficient energy for melting the wax (e.g. The lead sphere transfers less heat / thermal energy (than the steel sphere). Credit a supporting calculation)	(1)	2
	Total for question 5		4
Question Number	Answer		Mark
6(a)	Use of $pV = NkT$	(1)	
	Number of molecules = 2.2×10^{23} (Use of the number of molecules to get a pressure of 0.99 x 10 ⁵ Pa can score both	(1)	2
	marks. Allow use of $pV = nRT$ leading to correct answer for 2 marks, but no credit for a substitution of incorrect values into this equation)		
	Example of calculation		
	$N = \frac{1.1 \times 10^5 \text{ Pa} \times 8.2 \times 10^{-3} \text{ m}^3}{1.38 \times 10^{-23} \text{ J K}^{-1} \times 295 \text{ K}} = 2.2 \times 10^{23}$		
6(b)	QWC – Work must be clear and organised in a logical manner using technical		
	(For this question accept answers in terms of atoms, molecules or particles)		
	• Internal energy is (sum of) molecular kinetic and potential energies	(1)	
	• In (an ideal) gas the molecules have only kinetic energy Or the molecules do not have potential energy.	(1)	
	• $E_k = 3kT/2$ Or $E_k \propto T$ Or (above 0 K) the air molecules are in (continual) random motion	(1)	
	• If the gas reached absolute zero, then the K.E. of the molecules would be zero and so the statement is correct		
	Or If air is identified as not being ideal, then allow idea that molecules would still have potential energy at 0 K, and so statement is incorrect	(1)	4
	Total for quantier (6
	1 Otal for question 6		U