Thermodynamics QP1 1 When your diaphragm contracts, the pressure in the chest cavity is lowered below atmospheric pressure and air is forced into your lungs. | ass | e diaphragm contracts and the lung capacity increases by 20%. State tw umptions you would need to make to calculate the new pressure in the little pressure is known. | | |---------|---|-----| | 11111 | tial pressure is known. | (2) | | | ك | (2) | | | 16. | | | | | | | | | | | (b) (i) | The volume of air inhaled in a typical breath is 2.5×10^{-4} m ³ and an a about 25 breaths per minute. Show that the mass of air taken into the each second is about 1×10^{-4} kg. | | | | Density of air = 1.2 kg m ⁻³ | (2) | | | 187 | | | | | | | | | | | (ii) | If body temperature is 37.6°C and the temperature outside the body is 20.0°C, calculate the rate at which energy is used to warm air up to body temperature. | | |------|--|--| | | Specific heat capacity of air = $1000 \text{ J kg}^{-1} \text{ K}^{-1}$ | | | | (2) | Rate = | | | | | | | | (Total for Question $= 6 \text{ marks}$) | | | | Levision mades in the levision of | | | | 20 | 2 | a) A typical aerosol can is able to withstand pressures up to 12 atmospheres before exploding. A 3.0×10^{-4} m ³ aerosol contains 3.0×10^{22} molecules of gas as a propellant. Show that the pressure would reach 12 atmospheres at a temperature of about 900 K. | | | |---|---|-----|--| | | 1 atmosphere = 1.0×10^5 Pa | | | | | | (2) | | | | | | | | | C_{i}^{O} | | | | | *(b) Some such aerosol cans contain a liquid propellant. The propellant exists i can as a liquid and a vapour. Explain what happens when such an aerosol heated to about 900 K. | | | | | | | | | | | | | | | .0 | | | | | ;6 | | | | | ,87 | (Total for Question 2 = 5 marks) | | hair dryer is connected to a 230 V supply. | | |---------|--|-----| | | culate the minimum current in the heating element. | (2) | | | | (2) | | | | | | | | | | | Current = | | | (b) (i) | The fan in the hair dryer blows air at 20°C across the heating element at a rate of 0.068 kg s ⁻¹ . | | | | Calculate the temperature of the air emerging from the hair dryer. | | | | specific heat capacity of air = $1.01 \times 10^3 \text{ J kg}^{-1} \text{ K}^{-1}$ | (2) | | | | (2) | | | S | | | | 9/6 | | | | | | | | | | | | ;6 | | | | Exit temperature = | | | (ii) | Describe the energy changes that occur as air is blown past the heating element | | | | | (2) | | | | | | | | | | | | | | | | | (Total for Question 3 = 6 marks) | 4 A football has a diameter of 22.5 cm. It contains air at a temperature of 20° C and a pressure of $1.65 \times 10^{\circ}$ Pa. When the football is left in direct sunlight, the temperature of the air in the football increases to 40° C. | | | |---|-------|--| | In the following calculations, assume that the volume of the football remains constant. | | | | (a) (i) Show that the new pressure exerted by the air in the football is about 2×10^5 Pa | . (2) | | | (ii) State another assumption you made in your calculation. | | | | | (1) | | | (b) Air is then released from the football until the pressure returns to its original value. Assuming that the temperature remains at 40 °C, calculate the number of molecules that escape. | (3) | | | .0 | | | | | | | | | | | | | | | | Number of molecules escaping = | | | | (Total for Question $4 = 6$ mar | ks) | | 5 Two metal spheres of the same size are heated to a temperature of $100\,^{\circ}\mathrm{C}$ in a water bath. One of the spheres is made of lead and the other of steel. The spheres are then placed onto a sheet of paraffin wax as shown. Paraffin wax melts at 55 $^{\circ}\mathrm{C}$. | | Mass / g | Specific heat
capacity
/J kg ⁻¹ K ⁻¹ | |--------------|----------|--| | Lead sphere | 50 | 130 | | Steel sphere | 34 | 490 | (a) The steel sphere melts through the wax sheet and drops to the floor. The temperature of the steel sphere when it reaches the floor is 53 °C. Calculate the thermal energy lost by the steel sphere from the time when it was removed from the water bath. | | S | (2) | |---|-----------------------------|----------------------| | | ,00 | | | ~(C) | 0 | | | :0 | | | | is | Thermal energy lost | = | | (b) The lead sphere is only able to partially | y melt the wax, so does not | t drop to the floor. | | Explain this observation. | | (2) | | | | | | | | | | | | | (Total for Question 5 = 4 marks) | 6 A magazine article states that an inflated balloon contains about two hundred billion trillion (2×10^{23}) air molecules. | | |---|-----| | (a) Taking the balloon to be a sphere of volume 8.2×10^{-3} m ³ in a room at a temperatur of 22 °C, show that this figure for the number of molecules is correct. | re | | pressure of air in balloon = 1.1×10^5 Pa | (2) | | | | | | | | *(b) The article also states that the internal energy of the air in the balloon could become zero if the temperature of the gas became low enough. | | | Explain what is meant by the internal energy of the air and discuss whether the statement is correct. | | | | (4) | (Total for Question 6 = 6 marks)