Astrophysics MS1

Question Number	Answer	Mark
1(a)	Idea that the Earth is orbiting the Sun (1)	
	Reference to (trigonometric) parallax (1)	
	Idea that more distant stars have "fixed" positions (1)	(3)
(b)	Diagram to show how to measure angular displacement of star over a 6 month period e.g.	
	reachy stat To fined distant stars Ex	
	(1)	
	[Diagram should indicate the Earth in two positions at opposite ends of a diameter, with lines drawn heading towards a point with a relevant angle marked; accept the symmetrical diagram seen in many textbooks.]	
	Use trigonometry to calculate the distance to the star (1)	
	[May be indicated by an appropriate trigonometric formula. Do not accept use of Pythagoras]	
	Need to know the diameter/radius of the Earth's orbit about the Sun (1)	(3)
	[This may be marked on the diagram or seen in a trigonometric formula]	
(c)	Standard candle/Cepheid variable/supernovae (1)	(1)
	Total for question 13	(7)

Question	Answer		Mark
Number	II. 60 T.0.000 403	(1)	
2 (a)(i)	Use of $\lambda_{max}T=2.898 \times 10^{-3}$	(1)	
	Correct answer	(1)	(2)
	Example of calculation:		
	$T = \frac{2.898 \times 10^{-3} \text{ mK}}{5.2 \times 10^{-7} \text{ m}} = 5570 \text{ K}$		
(a)(ii)	Use of $F=L/4\pi d^2$	(1)	
	Correct answer	(1)	(2)
	Example of calculation:		
	$L = 1370 \text{ Wm}^{=2} \times 4\pi \times (1.49 \times 10^{11} \text{ m})^{2} = 3.8 \times 10^{26} \text{ W}$		
(a)(iii)	Use of L= $4\pi r^2 \sigma T^4$	(1)	
	Correct answer (7.46 \times 10 ⁸ m)	(1)	(2)
	Evernle of calculation:		, ,
	Example of calculation:		
	$r^{2} = \frac{3.82 \times 10^{26} \text{ W}}{4\pi \times 5.67 \times 10^{-8} \text{ Wm}^{-2} \text{K}^{-4} \times (5570 \text{ K})^{4}} = 5.57 \times 10^{17} \text{ m}^{2}$		
	$r = \sqrt{5.57 \times 10^{17} \text{ m}^2} = 7.46 \times 10^8 \text{ m}$		
	$3.8 \times 10^{-26} \mathrm{W} 4 \times 10^{26} \mathrm{W}$		
	5570 K 7.46 7.6		
	6000 K 6.4 6.6		
/L\	The annual point he deep one and the state of the state o		
· (b)	The answer must be clear, use an appropriate style and be organised in logical sequence	ı a	
QWC	High temperature AND high density/pressure	(1)	
	Any two reasons from:		
	Overcome coulomb/electrostatic repulsion	(1)	
	Nuclei come close enough to fuse/for strong (nuclear) force to act	(1)	,
	High collision rate/collision rate is sufficient	(1)	(max 3)
	Total for question 15	· · /	(9)

Question	Answer		Mark
Number		(4)	
3(a)(i)	Calculation of time period	(1)	
	Use of $v = \frac{\Delta s}{\Delta t}$ or $\omega = \frac{2\pi}{T}$	(1)	
	Use of $a = \frac{v^2}{r}$ or $a = r\omega^2$	(1)	
	Correct answer	(1)	
	Example of calculation:		
	24×60×60 s		(4)
	$T = \frac{24 \times 60 \times 60 s}{15} = 5760 s$		
	$v = \frac{2\pi r}{T} = \frac{2\pi \times 6.94 \times 10^6 \text{ m}}{5760 \text{ s}} = 7.57 \times 10^3 \text{ ms}^{-1}$		
	$a = \frac{v^2}{r} = \frac{\left(7.6 \times 10^3 \text{ ms}^{-1}\right)^2}{6.94 \times 10^6 \text{ m}} = 8.26 \text{ ms}^{-2}$		
	OR		
	$\omega = \frac{2\pi}{T} = \frac{2\pi}{5760 s} = 1.09 \times 10^{-3} ms^{-1}$		
	$a = r\omega^2 = 6.94 \times 10^6 \times (1.09 \times 10^{-3})^2 = 8.26 \text{ms}^{-2}$		
(a)(ii)	mg equated to gravitational force expression	(1)	
	g (= a) = $8.3 \text{ ms}^{-2} \text{ substituted}$	(1)	
	Correct answer	(1)	(3)
	Example of calculation:		
	$mg = \frac{GMm}{r^2}$		
	$\therefore 8.3 \mathrm{ms^{-2}} = \frac{6.67 \times 10^{-11} \mathrm{N} \mathrm{m}^2 \mathrm{kg}^{-2} \mathrm{M}}{\left(6.94 \times 10^6 \mathrm{m}\right)^2}$		
	$\therefore M = \frac{8.3 \text{ ms}^{-1} \times (6.94 \times 10^6 \text{ m})^2}{6.67 \times 10^{-11} \text{ Nm}^2 \text{kg}^{-2}} = 6.0 \times 10^{24} \text{ kg}$		
(b)	The observed wavelength is longer than the actual wavelength / the wavelength is stretched out	(1)	
	One from:		
	The universe is expanding	(1)	
	(All distant) <u>galaxies</u> are moving apart The (recessional) velocity of <u>galaxies</u> is proportional to distance	(1) (1)	
	The (recessional) velocity of galaxies is proportional to distance The furthest out galaxies move fastest	(1)	(max 2)

(c)(i)	A light year is the distance travelled (in a vacuum) in 1 year by light / em-radiation	(1)	
	The idea that light has only been able to travel to us for a time equal to the age of the universe.	(1)	(2)
(c)(ii)	(Use of v = H _o d to show) $H_o = \frac{1}{t}$	(1)	
	Correct answer	(1)	(2)
	Example of calculation:		
	$H_o = \frac{1}{t} = \frac{1}{12 \times 3.15 \times 10^{16} \text{ s}} = 2.65 \times 10^{-18} \text{ s}^{-1}$		
(c)(iii)	The answer must be clear and be organised in a logical sequence		
OWC	There is considerable uncertainty in the value of the Hubble constant	(1)	
QWC	Any sensible reason for uncertainty	(1)	
	Idea that a guess implies a value obtained with little supporting evider	nce	
	OR the errors are so large that our value is little better than a guess	(1)	(3)
	Total for question 17		(16)

Question	Answer	Mark
Number		
4(a)	Object must have a standard/known luminosity OR luminous properties	
	independent of its position (1)	
	It can be used to calculate distances (1)	
	Reference to any two of the following:	
	◆ Radiation/energy flux <u>measured</u> (1)	
	◆ Observed brightness compared with luminosity (1)	
	◆ Use of inverse square law [accept if equation quoted] (1)	Max 4
	◆ Object must be commonly found in the universe (1)	
(b)	When star contracts (front of) star is moving away from observer OR	
	explanation in terms of a rotating/binary star (1)	
	Movement away from observer results in a decrease in the frequency of	
	the radiation/red shift (1)	2
	Accept converse argument for an expanding star	
	Total for question 13	6

Question	Answer		Mark
Number	3.6		
5 (a)	Max 4 Assumption: that no energy is transferred to the surroundings OR all energy transferred from washers to water OR energy required to raise temperature of container is negligible OR no water evaporates	-	
	Measure the mass of the washers and water (using a balance) (1)	
	(Use a thermometer to) measure the temperature of the water before and after the washers are plunged into the water	1)	
	Equate thermal energy lost by steel to the energy gained by water (1)	Max 4
	Use a (standard) value for the specific heat capacity of the water OR specific heat capacity of water is known	1)	
(b)(i)		1)	1
(b)(ii)		1)	
		1)	2
	Example of calculation $T = \frac{2.898 \times 10^{-3} \text{ mK}}{2 \times 10^{-6} \text{ m}} = 1450 \text{ K}$		
(b)(iii)	Use of $L = 4\pi r^2 \sigma T^4$ (Correct substitution of radius (1) 1) 1)	3
	Example of calculation $L = 4\pi \times (2.5 \times 10^{-2} \text{ m})^2 \times 5.67 \times 10^{-8} \text{ Wm}^{-2} \text{K}^{-4} (1450 \text{K})^4 = 1970 \text{ W}$		
(b)(iv)	Shifted over to left	1) 1)	2
	Total for question 18		12

Question Number	Answer	Mark
6(a)	(A star/astronomical) object of known luminosity (due to some characteristic property of the star/object) (1) 1
(b)	Use of $F=L/4\pi d^2$ (1) $F = 1.09 \times 10^{-7} \text{ W m}^{-2}$ (1) Example of calculation $F = \frac{L}{4\pi d^2} = \frac{8.94 \times 10^{27} \text{W}}{4\pi (8.08 \times 10^{16} \text{m})^2} = 1.0896 \times 10^{-7} \text{ W m}^{-2}$	2
	Total for question 11	3

Question Number	Answer	Mark
7(a)(i)	Gravitation OR gravity OR gravitational attraction / pull / force (1)	1
(a)(ii)	Use of $F=Gm_1m_2/r^2$ (1)	-
(=, (=,	$F = 4.2 \times 10^{35} (N) \text{ (no u.e.)}$ (1)	2
	Example of calculation	
	$F = \frac{\tilde{G}m_1m_2}{r^2}$	
	$F = \frac{6.67 \times 10^{-11} \text{ N m}^2 \text{kg}^{-2} (1.6 \times 10^{39} \text{kg}) (4.0 \times 10^{37} \text{kg})}{(3.2 \times 10^{15} \text{ m})^2}$	
	$F = 4.17 \times 10^{35} \text{ N}$	
(a)(iii)	Use of $F = m\omega^2 r$ or $F = mv^2/r$ (1)	
(4)()	Use of $T=2\pi/\omega$ or $T=2\pi r/v$ (1)	
	T = 108 (years) [accept 107 - 111 years] (no ue) (1)	3
	[If r^3 appears in solution, max 1 mark out of 3.	
	If $\omega = \sqrt{\frac{G(M+m)}{(R+r)^3}}$ used, then full credit may be given. This	
	method leads to $T = 109$ years]	
	Example of calculation	
	$\omega = \sqrt{\frac{4.2 \times 10^{35} \text{ N}}{(1.6 \times 10^{39} \text{ kg}) \times 7.7 \times 10^{13} \text{ m}}}$	
	\(\tau_1 \\ \tau_2 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	
	$\omega = 1.85 \times 10^{-9} \text{ rad s}^{-1}$	
	$T = \frac{2\pi \text{rad}}{1.85 \times 10^{-9} \text{rad s}^{-1}} = 3.40 \times 10^9 \text{s}$	
	$T = \frac{3.40 \times 10^9 \text{ s}}{365 \times 24 \times 60 \times 60 \text{ s year}^{-1}} = 108 \text{ years}$	

	Example of calculation		
	$u = 7.1 \times 10^{-11}$	(1)	
	Use of $v = H_0 d$ $d = 7.1 \times 10^{25} \text{ m}$	(1) (1)	3
(b)(iii)	holes Use of $z = v/c$	(1)	
	Therefore there is no change in wavelength due to rotation of black		
	Reference to plane of orbit being perpendicular to line of sight from the Earth	(1)	
	ALTERNATIVE APPROACH:		
	effect when the black hole is approaching is to cause a small reduction in the observed red (rather than a blue) shift	(1)	2
	(So) both black holes are still moving away OR (hence) the overall		
(b)(ii)	The rotational motion (of the black holes) is small compared with that due to the overall recession	(1)	
	(Hence) the universe is expanding / provides evidence for Big Bang	(1)	
	galaxies is increasing/galaxies are moving apart	(1)	
	This indicates that distant galaxies are receding / distance between		3
	Radiation (is received) with a longer/stretched wavelength (compared to that emitted) OR lower/smaller frequency	(1)	
(b)(i)	(QWC- Work must be clear and organised in a logical manner using technical wording where appropriate.)		

Question Number	Answer		Mark
8 (a)	QWC – Work must be clear and organised in a logical manner using technical wording where appropriate		
	Process of fusion: Max 2 In nuclear fusion small <u>nuclei</u> fuse / join together to produce a larger <u>nucleus</u> Mass of the fused nucleus < total mass of initial nuclei	(1) (1)	
	(Energy is released as) $\Delta E = c^2 \Delta m$ Or B.E./nucleon increases (so energy is released)	(1)	
	Conditions: Max 3 A very high temperature To overcome the (electrostatic) repulsion between <u>nuclei</u> A (very) high pressure/density	(1) (1) (1) (1)	
	To maintain a high/sufficient collision rate Difficult to replicate: Max 2 (Very high) temperatures lead to confinement problems Contact with container causes temperature to fall (and fusion	(1) (1) (1)	
	to cease) Very strong magnetic fields are required	(1)	Max 6
(b)	Idea that ⁵⁶ Fe is the peak of the graph	(1)	
	If nuclei were to be formed with A > 56, the B.E./nucleon would decrease This would require a net input of energy (and so does not occur)	(1)(1)	3
/ (c)(i)	(A star/astronomical) object of known luminosity (due to some characteristic property of the star/object)	(1)	1
(c)(ii)	Use of $F = \frac{L}{4\pi d^2}$	(1)	
	Distance = 9.3×10^{24} m	(1)	2
	Example of calculation		
	$d = \sqrt{\frac{2.0 \times 10^{36} \text{ W}}{4\pi \times 10^{-15} \text{ W m}^{-2}}} = 9.30 \times 10^{24} \text{ m}$		
(c)(iii)	The galaxy is receding / moving away from the Earth	(1)	1
(c)(iv)	Use of $Z=v/c$ Use of $v=Hd$ Hubble constant = 2.1×10^{-18} s ⁻¹	(1) (1) (1)	3
	Example of calculation $v = Zc = 0.064 \times 3 \times 10^8 \text{ m s}^{-1} = 1.92 \times 10^7 \text{ m s}^{-1}$		
	$H = \frac{v}{d} = \frac{1.92 \times 10^7 \text{ m s}^{-1}}{9.30 \times 10^{24} \text{ m}} = 2.06 \times 10^{-18} \text{ s}^{-1}$		
	Total for question 19		16

Question Number	Answer	Mark
9	MAX 3 The existence of the microwave background:	
	• Originates from the Big Bang (1)	
	Microwave radiation comes from the universe itself Or it is cosmic background radiation [accept CMB]	
	Microwave wavelength linked to temperature of universe [e.g. indicates a temperature of space of about 3 K] (1)	
	• Originally the universe was a hotter place than it is now O r temperature decreases as the universe expands (1)	
	Wavelength has been increased Or frequency decreased. (Do not credit changes due to movement of galaxies) (1)	3
	Total for question 11	3

Question	Answer		Mark
Number 10 (a)(i)	16 μm [accept ±1μm]	(1)	1
(a)(ii)	Use of $\lambda_{\text{max}}T = 2.898 \times 10^{-3}$ Temperature = 180 K (ecf from (a)(i)) [161 K for 18 µm, 170 K for 17 µm, 193 K for 15 µm, 207 K for 14 µm]	(1) (1)	2
	Example of calculation $T = \frac{2.898 \times 10^{-3} \text{ mK}}{16 \times 10^{-6} \text{ m}} = 181 \text{K}$		
(b)	Mass of the Sun	(1)	
	G Or gravitational constant Or 6.67×10^{-11} (N m ² kg ⁻²)	(1)	2
	[can be next to either answer prompt]		
(c)	Use of $g = \frac{GM}{r^2}$	(1)	
	Field strength = $5.6 \times 10^{-6} \text{ N kg}^{-1} \text{ [accept m s}^{-2}\text{]}$	(1)	2
	$g = \frac{6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2} \times 1.9 \times 10^{27} \text{ kg}}{\left(1.5 \times 10^{11} \text{ m}\right)^2} = 5.63 \times 10^{-6} \text{ N kg}^{-1}$		
	Total for question 13		7

Question	Answer		Mark
Number			
11 (a)	 Max 2 Angles are measured using the fixed background of more distant stars Find angular displacement of the star (as Earth moves around the Sun) 	(1)	
	over a 6 month period / over a diameter of the Earth's orbit	(1)	
	Diameter of the Earth's orbit about the Sun must be measured/known	(1)	2
	[Full marks can be obtained from an annotated diagram] reachystar to fined distant stars		
(b)	QWC – Work must be clear and organised in a logical manner using technical wording where appropriate	(4)	
	Idea that red shift is the (fractional) increase in wavelength of light received	(1)	
	(due to) recession of the source from the Earth/observer	(1)	
	Doppler/red shift is used to find v (allow reference to use of red shift equation e.g. $v = zc$)	(1)	
	Appropriate reference to Hubble's Law Or $v = H_0 d$	(1)	4
	[for 1st marking point allow "decrease in frequency" for "increase in wavelength"]		
	Total for question 15		6

Question Number	Answer		Mark
12 (a)(i)	A = Red Giants Or $Giants$	(1)	
	B = Main Sequence	(1)	
	C = White Dwarfs Or Dwarfs	(1)	3
(a)(ii)	$S \rightarrow A \text{ correctly marked (some upward curving from near A, near to C but can go beyond C)}$	(1) (1)	2
(b)	We determine the star's		
	• temperature <i>T</i> (from Wien's law)	(1)	
	• luminosity L (from the H-R diagram)	(1)	
	• (Then) r is calculated using (Stefan's Law) $L=4\pi r^2 \sigma T^4$ Or $L=A\sigma T^4$ [accept a re-arranged equation for A Or r]	(1)	3
	Total for question 16		8

Question	Answer		Mark
Number			
13	QWC – Work must be clear and organised in a logical manner using technical wording where appropriate		
	Standard candles are (stellar) objects of known luminosity	(1)	
	Standard candle's brightness on earth is measured/known/found [accept apparent magnitude or flux in place of brightness] [Do not accept 'used' in place of 'measured']	(1)	
	Use inverse square law [F=L/ $4\pi d^2$] Or use distance modulus method [M – m = 5log(d/10)]	(1)	
	(Hence) distance to standard candle is calculated	(1)	
	Dust layer will reduce brightness /magnitude/flux of Cepheid	(1)	
	Cepheid will appear to be further away than it is	(1)	6
	[accept "star" for "standard candle" or for "Cepheid" for MP2 to MP6]		
	Total for question 14		6

Question Number	Answer		Mark
14/a)	Calculate gradient of line Identify gradient with H Or use of $v = Hd$ for a point on the line Use of $t = 1/H$ $t = 4.5 \times 10^{17}$ s (accept answers in range 4.2×10^{17} s to 4.8×10^{17} s)	(1) (1) (1) (1)	
	Alternative method: Pair of d, v values read from the line Values chosen from the upper end of the line Use of $t = d/v$ $t = 4.5 \times 10^{17} \text{ s } [\pm 0.3 \times 10^{17} \text{ s}]$ $[t = 1.4 \times 10^{10} \text{ yr } [\pm 0.1 \times 10^{10} \text{ yr}]$	(1) (1) (1) (1)	4
	Example of calculation $H = \text{gradient} = \frac{(11000 - 0) \times 10^3 \text{m s}^{-1}}{(50 - 0) \times 10^{23} \text{m}} = 2.2 \times 10^{-18} \text{s}^{-1}$		
	$t = \frac{1}{H} = \frac{1}{2.2 \times 10^{-18} \mathrm{s}^{-1}} = 4.5 \times 10^{17} \mathrm{s}$		
(b)	QWC – Work must be clear and organised in a logical manner using technical wording where appropriate		
	Measure wavelength of light (from the galaxy) Compare it to the wavelength for a source on the Earth Reference to spectral line or line spectrum Reference to Doppler effect/shift Or redshift	(1) (1) (1) (1)	
	v is found from:		
	fractional change in wavelength equals ratio of speed of source to speed of light Or see reference to $\frac{\Delta \lambda}{\lambda} = \frac{v}{c}$ with terms defined Or see reference to $z = \frac{v}{c}$ with terms defined	(1)	5
	Or see reference to $z = -$ with terms defined		
	[accept answers in terms of frequency rather than wavelength]		
(c)	QWC – Work must be clear and organised in a logical manner using technical wording where appropriate		
	Max 3 (Due to the) difficulty in making accurate measurements of distances to galaxies	(1)	
	Hubble constant has a large uncertainty Or age = 1/H may not be valid as gravity is changing the expansion rate	(1)	
	Because of the existence of dark matter	(1)	
	Values of the (average) density/mass of the universe have a large uncertainty [accept not known]	(1)	
	(Hence) measurements of the critical density of the Universe have a large uncertainty	(1)	
	Dark energy may mean we don't understand gravity as well as we thought we did (so it's hard to predict how gravity will determine the ultimate fate)	(1)	3
	Total for question 16		12