Electromagnetic Effects MS2

Question Number	Answer	Mark
1(a)	Disc/metal/cathode is heated (by a current)(1)Thermionic emission(1)(allow use of extremely high pd and a vacuum for 2 marks)(1)	2
1(b)	See $F = mv_{(v)}/t$ Or $F = ma$ and $v_{(v)} = at$ (1)See $F = eE$ (accept $F = EQ$)(1)See (time in field is) $t = l/v$ (1)(This needs to be three clear statements)(1)(Do not credit a units method)	3
1(c)	Find/measure horizontal distance from plates to screen(1)Find/measure vertical displacement from centre of screen(1)Use tan θ (1)(this mark can be awarded if velocities are used rather than distances)	3
1(d)	Tan θ = vertical velocity / horizontal velocity Or v_v/v (1) $v_v = \frac{Ee}{m} \times \frac{l}{v}$ and $v_H = v$ (conditional mark) (1) (Do not credit a units method)	2
1(e)(i)	Magnetic rather than electric <u>force</u> Or Bev/BQv is the magnetic force Or $F = Bev/BqV$ (do not credit just $eE = Bev$) (1)	1
1(e)(ii)	Mark for appreciation of magnetic force e.g.Force/acceleration now centripetal Or (causes) circular motion Or force/acceleration not vertical Or force/acceleration is not always in the same direction Or vertical force/acceleration not constant Or force/acceleration is at right angles to direction of motion,Or force/acceleration is at right angles to direction of motion, Mark for consequenceHorizontal velocity no longer constant Or $l/v = t$ not true(1)	2
	Total for question 1	13

Question Number	Answer		Mark
2(a)	Use of $f = 1/T$ with 10 or 10×10^{-3} on the denominator $f = 100$ Hz	(1) (1)	2
	Example of calculation $f = 1/T = 1/(10 \times 10^{-3} \text{ s}) = 100 \text{ Hz}$		
(b)	See or use $(N)\Phi = NBA$ B = 0.016 T	(1) (1)	2
	Example of calculation $N\Phi = NBA$ $B = N\Phi/NA = 2 \times 10^{-2}$ Wb / ($500 \times 2.5 \times 10^{-3}$ m ²) B = 0.016 T		
(c)	tangent drawn at 2.5, 7.5 or 12.5 ms Or linear section of graph used ±0.5 vertical scale	(1)	
	Value(s) substituted into $\mathcal{E} = \Delta(N\Phi)/\Delta t$	(1)	
	$\varepsilon = (\pm)12.5 \text{ V} - 14.0 \text{ V}$	(1)	
	[common error is to find average value over half a cycle \rightarrow 8 V scores MP2 only]		
	Or		
	Use of $\mathcal{E} = BNA\omega$ (ecf <i>B</i> from(b) and <i>f</i> from (a))	(1)	
	Use of $\omega = 2\pi f$ $\varepsilon = 12.6 \text{ V}$	(1) (1)	3
	Total for Question	(1)	7

Question Number	Answer		Mark
3(a)*	(QWC – Work must be clear and organised in a logical manner using technical wording where appropriate)		
	There is a changing (magnetic) flux (linkage)		
	Or the coil cuts (magnetic) field / flux (lines)	(1)	
	Inducing an emf (across the ends of the coil/wire)	(1)	
	Generating a current because there is a closed circuit		
	Or generating a current because coil is in a circuit	(1)	3
3 (b)	Current produced is a.c. / alternating		
	Or the battery needs d.c.	(1)	1
3(c)	(As rate of rotation of wheels reduces)		
	the rate of change of (magnetic) flux(linkage) reduces Or rate of cutting field lines decreases	(1)	
	e.m.f. is proportional to the rate of change of flux (linkage) Or $\mathcal{E} = \frac{(-)dN\varphi}{dt}$	(1)	
	(induced) e.m.f. decreases (steadily)	(1)	3
	Total for question 3		7

Question	Answer		Mark
Number			
*4(a)	(QWC – Work must be clear and organised in a logical manner using technical wording where appropriate)		
	(Alternating current in charger coil produces) alternating/varying magnetic field	(1)	
	Idea that magnetic flux in charger coil linked to coil in watch		
	Or Lines of flux cutting coil in watch Or varying flux in coil in watch	(1)	
	e.m.f. <u>induced</u> in watch circuit	(1)	
	current since complete/closed circuit	(1)	4
4(b)	direct current required/produced		
	Or otherwise it would be alternating current	(1)	1
	(accept dc for direct current or ac for alternating current)		
	Total for question 4		5

Question	Answer		Mark
Number 5(a)	Either		
J(a)	Use of Pythagoras to find length of wire perpendicular to field [6.1 cm]	(1)	
	Use of $F = B \times I \times \text{length of wire perpendicular to field using}$	(1)	
	F = 0.0037 N	(1)	
	Or		
	Use of $\cos\theta = a/h$ Or use of $\sin\theta = o/h$ Or measures an angle from diagram as $73^{\circ} \pm 1^{\circ}$ Or measures an angle from diagram as $17^{\circ} \pm 1^{\circ}$	(1)	
	Use of $F = BIl\sin\theta$ using correct angle	(1)	
	F = 0.0037 N (accept $F = 0.0040$ N if measured angle of 73° used)	(1)	3
	Example of calculation		
	$cos \theta = 3.2 cm / 6.9 cm$ $\theta = 62.4^{\circ}$ $F = 0.074 T \times 0.82 A \times 0.069 m \times sin 62.4^{\circ}$ $= 0.074 T \times 0.82 A \times 0.069 m \times 0.89$ F = 0.0037 N		
	Using measured angle: $\theta = 73^{\circ}$		
	$F = 0.074 \text{ T} \times 0.82 \text{ A} \times 0.069 \text{ m} \times \sin 73^{\circ}$ = 0.074 T × 0.82 A × 0.069 m × 0.96		
	F = 0.0040 N		
5(b)	Direction into page	(1)	
	Using (Fleming) LHR	(1)	2
	Total for question 5		5
	Total for question 5		5