Gravitational Fields MS1

Question Number	Answer		Mark
1(a)(i)	Use of $\omega = 2\pi/T$	(1)	
		(1)	
	$\omega = 2.66 \times 10^{-6} \text{ (rad s}^{-1}\text{)}$	(1)	2
	Example of calculation		-
	$\omega = \frac{2\pi}{T} = \frac{2\pi}{27.3 \times 24 \times 3600 \text{ s}} = 2.66 \times 10^{-6} (\text{rad}) \text{s}^{-1}$		
1(a)(ii)	See $(F =) \frac{Gm_1m_2}{r^2}$	(1)	
	1		
	Evidence that gravitational force equated to centripetal force	(1)	
	Correct substitution [e.c.f.]	(1)	
	$r = 3.92 \times 10^8 \mathrm{m}$	(1)	4
	If show that value is used, $r = 3.62 \times 10^8$ m		
	Example of calculation		
	GMm		
	$r^2 = m\omega^2 r$		
	$r^3 = \frac{GM}{GM}$		
	ω^2		
	$6.67 \times 10^{-11} \text{ Nm}^2 \text{ Lg}^{-2} \times 6.4 \times 10^{24} \text{ Lg}^{-2}$		
	$\therefore r = \sqrt[3]{\frac{6.67 \times 10^{-11} \mathrm{Nm}^2 \mathrm{kg}^{-2} \times 6.4 \times 10^{24} \mathrm{kg}}{(2.66 \times 10^{-6} \mathrm{s}^{-1})^2}} = 3.92 \times 10^8 \mathrm{m}$		
1(b)(i)	Max two from:		
	 Gravitational force on moon is reduced 	(1)	
	• (Therefore) ω or v is decreased	(1)	
	• (Hence) the orbital time increases	(1)	
	• Valid reference to Kepler's law: $T^2 \alpha r^3$	(1)	Max 2
1(b)(ii)	Rate of increase = 4 (cm per year)	(1)	1
	Example of coloulation		
	$\frac{\text{Example of calculation}}{\text{Rate of increase} = 800 \text{ cm} / 200 \text{ yr} = 4 \text{ cm yr}^{-1}}$		
1(b)(iii)*	(QWC – Work must be clear and organised in a logical manner using	σ	
	technical wording where appropriate)	Ð	
	Answers based on expanding universe/galaxies/stars do not gain cred	dit	
	Idea that in the past the moon was closer OR the gravitational pull		
	would have been larger	(1)	
	In the past the tidal effects would have been greater/stronger	(1)	3
	The rate of change of orbital radius would have been greater	(1)	
	Total for question 1		12

Question	Answer	Mark
Number		
2(a)	See $F = mg$ and $F = (-)GmM/r^2$ (1))
	Equate and cancel m on either side (1) 2
2(b)	Substitute into $g = GM/r^2$ to obtain $g = 9.78$ N kg ⁻¹ [condone m s ⁻²] (1) 1
	$\frac{\text{Example of calculation}}{g = \frac{GM}{r^2} = \frac{6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2} \times 5.97 \times 10^{24} \text{ kg}}{(6.38 \times 10^6 \text{ m})^2} = 9.783 \text{ N kg}^{-1}$	
	Total for question 2	3

Question Number	Answer	Mark
3	See $g = \frac{GM}{r^2}$ (1)	
	Correct substitution into $g = \frac{GM}{r^2}$ (1)	
	$r_{\rm E}/r_{\rm m} = 3.7$ (1)	3
	(Correct inverse ratio i.e. $r_{\rm m}/r_{\rm E} = 0.27$, scores full marks)	
	$\frac{\text{Example of calculation}}{g_{\text{E}} = \frac{GM_{\text{E}}}{r_{\text{E}}^2}} g_{\text{m}} = \frac{GM_{\text{m}}}{r_{\text{m}}^2}}{\frac{GM_{\text{E}}}{g_{\text{m}}}} \times \frac{g_{\text{m}}}{\frac{GM_{\text{E}}}{r_{\text{m}}^2}} = \frac{M_{\text{E}}}{M_{\text{m}}} \times \frac{r_{\text{m}}^2}{r_{\text{E}}^2}}{\frac{r_{\text{m}}^2}{r_{\text{m}}^2}} \times 6 = 81 \times \frac{r_{\text{m}}^2}{r_{\text{E}}^2}$	
	$harpi \frac{r_{\rm E}}{r_{\rm m}} = \sqrt{\frac{81}{6}} = 3.67 \approx 3.7$	
	Total for question 3	3

Question Number	Answer		Mark
4(a)	The gravitational field strength [accept "g"] decreases Or the (gravitational) force on the satellite/object/mass decreases It is a centripetal force (and not a centrifugal force) The satellite is accelerating and so is not in balance	(1) (1) (1)	3
4(b)(i)	See $\frac{mv^2}{r} = \frac{GmM_E}{r^2}$ Or $m\omega^2 r = \frac{GMm}{r^2}$	(1)	
	$\therefore v^2 = \frac{GM_E}{r} \qquad \text{Or} \qquad v = \sqrt{\frac{GM_E}{r}}$	(1)	
	GM_E is constant (and so v decreases as r increases)		
	Or $v^2 \propto \frac{1}{r}$ Or $v \propto \frac{1}{\sqrt{r}}$	(1)	3
4(b)(ii)	Or $v^2 \propto \frac{1}{r}$ Or $v \propto \frac{1}{\sqrt{r}}$ State $T = \frac{2\pi}{\omega}$ and $\omega = \frac{v}{r}$ Or $T = \frac{s}{v}$ and $s = 2\pi r$	(1)	
	Hence $T = \frac{2\pi r}{v}$ (so smaller v leads to a larger value of T)	(1)	2
	[Accept		
4(c)	$T = \frac{2\pi GM_{\rm E}}{v^3}$ for final mark] Use of $T = \sqrt{\frac{4\pi^2 r^3}{GM}}$	(1)	
	T = 5530 s [92 minutes]	(1)	2
	Example of calculation $T = \sqrt{\frac{4\pi^2 r^3}{GM}} = \sqrt{\frac{4\pi^2 (6360000 \text{ m} + 400000 \text{ m})^3}{6.67 \times 10^{-11} \text{ N} \text{ m}^2 \text{ kg}^{-2} \times 5.98 \times 10^{24} \text{ kg}}} = 5530 \text{ s}$		
4(d)	Max 2 As radius decreases:		
	There is a transfer of gravitational potential energy to kinetic energy [Accept kinetic energy increases and gravitational potential energy decreases]	(1)	
	Sum of kinetic and gravitational potential energy decreases Or satellite does work against frictional forces Or transfer of kinetic energy of satellite to thermal energy Or heating occurs	(1)	2
	Total for question 4		12

Question Number	Answer		Mark
5(a)	Use of $F = \frac{G m_1 m_2}{r^2}$ $G = 6.6 \times 10^{-11} (\text{N m}^2 \text{ kg}^{-2})$ [must see 6.6×10^{-11} when rounded to 2 sf] <u>Example of calculation</u> $G = \frac{1.5 \times 10^{-7} \text{ N} \times (0.23 \text{ m})^2}{160 \text{ kg} \times 0.75 \text{ kg}} = 6.61 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$	(1)	2
Questio n Number	Answer		Mark
6(a)	See (unbalanced force), $F = \frac{Gm_1m_2}{r^2}$ Apply N2 with $a = v^2/r$ Or Equate F with mv^2/r Or Equate F with mw^2r Use of $T = 2\pi r/v$ Or $T = 2\pi/\omega$ T = 43000 (s) Or At height of satellite orbit, use $g = GM/r^2$ Use $g = a = \omega^2 r$ Or $g = a = v^2/r$ Use of $T = 2\pi r/v$ Or $T = 2\pi/\omega$ T = 43000 (s) [First 3 marks can be obtained from use of $T = 2\pi \sqrt{\frac{r^3}{GM}}$] [If reverse show that to calculate $h = 18$ 900 km, then max 3 marks] Example of calculation: $\frac{GMm}{r^2} = \frac{mv^2}{r}$ $v = \sqrt{\frac{GM}{r}}$ $r = (20200 + 6400) \text{ km} = 2.66 \times 10^7 \text{ m}$ $v = \sqrt{\frac{6.67 \times 10^{-11} \text{ Nm}^2 \text{ kg}^{-2} \times 6.0 \times 10^{24} \text{ kg}}{2.66 \times 10^7 \text{ m}}} = 3.88 \times 10^3 \text{ ms}^{-1}$ $T = \frac{2\pi \times 2.66 \times 10^7 \text{ m}}{3.88 \times 10^3 \text{ ms}^{-1}} = 43100 \text{ s}$	 (1) (1) (1) (1) (1) (1) (1) (1) 	4

	[Converse accepted for both marks. Do not credit references to velocity or		
	The orbit of the communications satellite must be in an equatorial plane	(1)	2
6(c)	The radius of the GPS satellite orbit is smaller	(1)	
	Or communications satellites must have same angular velocity as the Earth Or communications satellites must have same period as the Earth Or communications satellites must be in geosynchronous orbits	(1)	2
6(b)	Communications satellites must be in the same position in sky at all times Or communications satellites must be in a geostationary orbit (So) communications satellites must rotate at the same rate as the Earth	(1)	

eviisionnadesimple