Gravitational Fields MS2

Question Number	Answer		Mark
1 (a)	Use of $g = \frac{GM}{r^2}$ Use of ratio $g_2 = 9.7 \text{ N kg}^{-1} \text{ (accept ms}^{-2}\text{)}$	(1) (1) (1)	
	Or Use of $g_1 = \frac{GM_E}{r_1^2}$ to calculate M_E	(1)	
	Use this value in $g_2 = \frac{GM_E}{r_2^2}$	(1)	
	$g_2 = 9.7 \text{ N kg}^{-1} \text{ (accept ms}^{-2}\text{)}$ Example of calculation	(1)	3
	$\frac{g_2}{g_1} = \frac{r_1^2}{r_2^2}$ $g_2 = \left(\frac{6400 \text{km}}{6437 \text{km}}\right)^2 \times 9.81 \text{N kg}^{-1} = 9.70 \text{N kg}^{-1}$		
(b)	At least four straight evenly spaced radial lines (tolerate lines that extend inside the circle). Arrows pointing towards centre	(1) (1)	2
	E		
(c)	The jump took place in a very small region of the Earth's field Or The height of the jump is much less than the radius of the Earth	(1)	
	Field lines are (approximately) parallel Or idea that <i>g</i> is approximately constant	(1)	2
	Total for Question12		7

Question Number	Answer	Mark
2	Use of $F = \frac{Gm_1m_2}{2}$ (1)	
	Use of $F = \frac{Gm_1m_2}{r^2}$ (1) $F = 8.2 \times 10^{16} \text{ N}$	2
	Example of calculation:	
	$F = \frac{Gm_1m_2}{r^2} = \frac{6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2} \times 6.4 \times 10^{23} \text{ kg} \times 6.0 \times 10^{24} \text{ kg}}{\left(5.6 \times 10^{10} \text{ m}\right)^2}$	
	$F = 8.17 \times 10^{16} \text{ N}$	
		2

Question Number	Answer		Mark
3 (a)(i)			
3 (4)(1)	Use of $\omega = \frac{2\pi}{T}$	(1)	
	See $F = \frac{GMm}{r^2}$ and $F = m\omega^2 r$	(1)	
	$GM = 4.07 \times 10^{14} (\text{m}^3 \text{s}^{-2})$	(1)	
	Or		
	Use of $v = \frac{2\pi r}{T}$	(1)	
	See $F = \frac{GMm}{r^2}$ and $F = \frac{mv^2}{r}$	(1)	
	$GM = 4.07 \times 10^{14} (\text{m}^3 \text{s}^{-2})$	(1)	3
	[If reverse "show that" attempted, max 2]		
	Example of calculation:		
	$\omega = \frac{2\pi}{T} = \frac{2\pi \text{ rad}}{2.36 \times 10^6 \text{ s}} = 2.66 \times 10^{-6} \text{ rad s}^{-1}$		
	$\frac{GMm}{r^2} = m\omega^2 r$		
	$GM = \omega^2 r^3 = (2.66 \times 10^{-6} \mathrm{s}^{-1})^2 \times (3.86 \times 10^8 \mathrm{m})^3 = 4.07 \times 10^{14} \mathrm{m}^3 \mathrm{s}^{-2}$		
(a)(ii)	Use of $g = \frac{GM}{R^2}$ with $g = 9.81 \text{ N kg}^{-1}$	(1)	
	$R = 6.4 \times 10^6 \text{ m } [6.5 \times 10^6 \text{ m if show that value used}]$	(1)	2
	Example of calculation: $R = \sqrt{\frac{GM}{g}} = \sqrt{\frac{4.07 \times 10^{14} \text{m}^3 \text{s}^{-2}}{9.81 \text{N kg}^{-1}}} = 6.44 \times 10^6 \text{m}$		

(b)	Force varies with distance (from the Earth) according to inverse square law		
	$F \propto \frac{1}{r^2}$	(1)	
	so force (on these asteroids) is (very) small	(1)	
	Or		
	Gravitational field strength varies with distance (from the Earth) according to		
	inverse square law $g \propto \frac{1}{r^2}$	(1)	
	so gravitational field strength is (very) weak at this distance	(1)	2
	[Accept idea that since the asteroids are much further from the Earth (than		
	the moon) they are only weakly bound (to the Earth) for max 1 mark]		
	Total for Question 14		7

Question Number	Answer		Mark
4(a)	Use of $F = \frac{Gm_1m_2}{r^2}$		
	Or Use of $g = \frac{Gm}{r^2}$ with $F = mg$	(1)	
	$\frac{F_{sun}}{F_{moon}} = 180$	(1)	
	[Allow max 1 if only $g = \frac{Gm}{r^2}$ is used to find $\frac{g_S}{g_M} = 183$]		
	Example of calculation:		
	$\frac{F_{\text{sun}}}{F_{\text{moon}}} = \frac{m_{\text{sun}}}{m_{\text{moon}}} \times \left(\frac{r_{\text{moon}}}{r_{\text{sun}}}\right)^2 = \frac{2 \times 10^{30} \text{kg}}{7 \times 10^{22} \text{kg}} \times \left(\frac{3.8 \times 10^8 \text{m}}{1.5 \times 10^{11} \text{m}}\right)^2 = 183$		2
(b)(i)	$g = \frac{GM}{x^2}$ and $g = \frac{GM}{(x+D)^2}$ (on either side of the Earth's diameter D)	(1)	1
(b)(ii)	$x \gg D$ Or $(x+D) \approx x$	(1)	
	So $\Delta g \approx 0$ [MP2 dependent upon MP1]	(1)	
	Or		
	The distance of the Sun from the Earth is very large compared with the Earth's diameter	(1)	
	Hence the difference in g (at opposite sides of the Earth due to the Sun) is (very) small [MP2 dependent upon MP1]	(1)	
	[Accept g is approximately the same at both positions for MP2]		2
	Total for Question 12		5

Question	Answer		Mark
Number			
5 (a)	Use of $\alpha = \frac{GM}{G}$	(1)	
	Use of $g = \frac{GM}{r^2}$		
	$M = 4.5 \times 10^{23} \text{ kg}$	(1)	
		(1)	
	Example of calculation		
	$ar^2 = 0.81 \text{ N/s} a^{-1} \times (1.74 \times 10^6 \text{ m})^2$		
	$M = \frac{gr^2}{G} = \frac{9.81 \mathrm{N kg^{-1}} \times \left(1.74 \times 10^6 \mathrm{m}\right)^2}{6.67 \times 10^{-11} \mathrm{N m^2 kg^{-2}}} = 4.45 \times 10^{23} \mathrm{kg}$		
	$G = 6.67 \times 10^{-11} \mathrm{N} \mathrm{m}^2 \mathrm{kg}^{-2}$		2
(b)	(the gravitational force on the Moon would be larger), but the centripetal		
	acceleration would be independent of the mass of the Moon		
	Or		
	$r\omega^2 = \frac{GM}{r^2}$: $\omega^2 = \frac{GM}{r^3}$	(1)	
	r^{2} \cdots w^{2} r^{3}	(-)	
	(angular) velocity and hence T is independent of mass of Moon	(1)	
			2
(c)	Gravitational forces on the seas/oceans/Earth would be greater	(1)	
	Or		
	Tidal variations would be more extreme		
	[accept tides would be bigger, higher, larger, faster; do not accept tides		
	would be stronger]		1
	Total for Question 13		5