Question Number	Answer		Mark
1(a)	To prevent interaction/deflection/collision of the alpha particle with the air. [do not accept: 'don't get in the way' , 'cause ionisation', 'interfere with'. Looking for a definite interaction between the alpha and the air molecules. Accept air particles]	(1)	1
1(b)	MAX TWO Nucleus (very) much smaller than separation of nuclei Or nucleus (very) much smaller than the atom	(1)	
	Nucleus is charged (don't penalise if candidate says positively charged)	(1)	
	Nucleus is (very) dense Or nucleus is massive Or nucleus contains most of the mass	(1)	2
	(no credit for candidates referring to the atoms and not the nucleus.)		
1(a)	Ton Particle		
1(0)	Path curves up with less deflection than for particle shown and		
	must cross the printed line.		
	Or a straight path.	(1)	
	Bottom Particla		
	Path curves up with more deflection than for particle shown	(1)	
	Greatest curvature before greatest curvature of particle shown.	(1)	3
	(dependent mark)		
	Example		
	Example		
	Total for question 1		6

Question	Answer		Mark
	4 is the number of nucleons \mathbf{Or} number of neutrons and protons	(1)	
2(a)	Or mass number Or nucleon number	(1)	
	2 is the number of protons Or proton number Or atomic number	(1)	2
2(b)(i)	(The particles are moving) close to the speed of light	(1)	1
			-
2(b)(ii)	To create particle /antimatter		
	Or To allow (large) repulsive forces to be overcome	(1)	1
	Of To break the particles (into their constituents)	(1)	1
2(b)(iii)	Mass = $4u$ (accept use of $4m_p$)	(1)	
2(0)(11)	Use of $E = mc^2$	(1)	
	Division by <i>e</i>	(1)	
	Mass = 3.74 (GeV/ c^2)	(1)	4
	(use of mass of proton instead of $u \rightarrow 3.76 \text{ GeV}/c^2$)		
	Example of calculation $4 - 1.66 - 10^{-27}$		
	$\max_{2} = 4 \times 1.66 \times 10 \text{Kg} = 6.64 \times 10 \text{Kg}$		
	$mc = 6.04 \times 10^{-10} \text{ Kg} \times (3 \times 10^{-10} \text{ m/s}) = 6.0 \times 10^{-10} \text{ J}$		
	$\begin{array}{c} 0.0 \times 10 & \text{J} / 1.0 \times 10 \\ \text{Mass} = 3.74 \text{ GeV}/c^2 \end{array}$		
$2(\mathbf{b})(\mathbf{i}\mathbf{v})$	They meet matter (helium nuclei) and annihilate	(1)	1
2(0)(1)	They meet matter (neman nacion) and <u>animitate</u>	(1)	-
<u> </u>		1	
2(b)(v)	Use of $E = hf$ ecf E from (iii)	(1)	
	Frequency = 9.02×10^{23} Hz (using 3.74 GeV/ c^2)	(1)	2
	$(3.76 \text{ GeV}/c^2 \rightarrow 9.07 \times 10^{23} \text{ Hz})$		
	$4 \text{ GeV}/c^2 \rightarrow 9.65 \times 10^{-9} \text{ Hz})$		
	(half or double these values due to a stray 2 can score 1st mark)		
	(nam of double mese values, due to a stray 2 can score 1st mark) (use of $\lambda = h/p$ scores ())		
	Example of calculation		
	$f = 3.74 \times 10^9 \times 1.6 \times 10^{-19} \mathrm{J} / 6.63 \times 10^{-34} \mathrm{Js}$		
	$f = 9.02 \times 10^{23} \mathrm{Hz}$		
2(c)(i)	Quark and antiquark	(1)	1
2(c)(ii)	\vec{p} consists of $\vec{u} \cdot \vec{u} \cdot \vec{d}$		
		(1)	
	$\frac{1}{2}$ $\frac{2}{2}$ $\frac{2}{2}$ $\frac{1}{2}$ $\frac{1}$	(1)	
	= 730 = 730 + 730 = -0 must be consistent with structure of p	(1)	
		(1)	
	n consists of a a u	(-)	
		(1)	4
	$+\frac{1}{3}e + \frac{1}{3}e - \frac{2}{3}e = 0$ must be consistent with structure of n		

(The sum must be clearly shown for marks 2 & 4)

16

Total for question 2

Question	Answer		Mark
Number			
*3	(QWC – Work must be clear and organised in a logical manner using technical wording where appropriate)		
	Reference to electric <u>field</u>	(1)	
	Any three from		
	particles accelerate when in the gaps		
	Or particles gain energy when in the gaps	(1)	
	p.d. / polarity / supply reverses while particles are in the tube	(1)	
	p.d./ polarity / supply switches at constant time interval	(4)	
	Or p.d./supply has a constant frequency	(1)	
	(Drift) tubes get longer so particles are in tubes for the same time	(1)	4
	Total for Question 3		4

no

Question Number	Answer		Mark
4(a)(i)	Charge of Ω is negative /–(1) due to conservation of charge (accept		
	demonstration by equation)	(1)	
	Ω baryon because 3 quarks (are needed for strangeness of -3)		
	Or		
	to conserve Baryon number since proton has $B = 1$	(1)	2
4(a)(ii)	Marks awarded for the kaon particles and proton		
	$\overline{\mathbf{K}}$ $\overline{\mathbf{su}}$	(1)	
	p uud	(1)	
	K^+ us V^0 V^-	(1)	4
		(1)	-
	The quarks for each particle can be in any order		
4(b)(i)	Finds mass of (stationary) particles	(1)	
4(D)(I)	Subtracts 2× rest mass proton	(1)	
	Divides by 2 to give $E_k = 1320$ (MeV)	(1)	3
	(for MP1 &2 ignore units and further calculations involving c^2)		
	Example of calculation		
	mass of new particles = $938+(14 \times 140)+494+1115 = 4507 \text{ MeV/c}^2$		
	$E_{\rm k}$ required = 4507 MeV		
	Before collision, $E_{\text{total}} = E_{\text{k}} + E_{\text{mass}}$		
	$E_{\rm k} = 4507 - (2 \times 938) = 2631 \text{ MeV}$		
4(b)(ii)	Evidence that (conservation of) momentum is being considered	(1)	
	(if one particle is moving) total momentum before collision is not zero		
	Or (for the interaction to occur, initial) momentum must/should be zero		
	Or not all of the (kinetic) energy can be used to create particles / mass	(1)	2
	(only award MP2 if it is related to conservation of momentum)		
	(if the candidate states that momentum is not conserved, allow MP1 only)		
	Total for Question 4		11
	X		

Question	Answer		Mark
5(a)	(+2/3) + (-1/3) + (-1/3) = 0	(1)	1
	$\mathbf{Or} (+)2/3 - 1/3 - 1/3 = 0$		
	$\begin{bmatrix} \text{Summation to } 0 \text{ must be shown} \end{bmatrix}$		
5(b)	Δ^{-} /baryon has 3 quarks	(1)	•
	π /meson has a quark antiquark (Accept 2 quarks, one quark and one antiquark)	(1)	2
5(c)	$\Delta^{++} \rightarrow uuu$	(1)	
	π charge \rightarrow +1 Or +e Or +1.6 ×10 $^{-17}$ C	(1)	2
	Total for Ouestion 5		5
Question	Answer		Mark
*6(a)	(QWC – Work must be clear and organised in a logical manner using		
. ()	technical wording where appropriate)		
	Magnetic field/force is perpendicular to path/velocity /motion(of charged	(1)	
	(Magnetic) force / acceleration to centre (of circle) Or (magnetic) force acts		
	as centripetal force	(1)	
	See a relevant equation: $F = Bqv$ Or $Bqv = mv^2/r$ Or $r = p/BQ$	(1)	
	Sansible comment on variables based on ribeing constant	(1)	4
	Sensible comment on variables based on 7 being constant	(-)	
6(b)	Reference to $r = p/BQ$	(1)	
	Leading to a statement that indicates that the (strength of the) magnetic		
	field needs to increase (dependent mark)	(1)	2
	Use of $E = m^2$	(1)	
6(C)(1)	$E = 1.64 \times 10^{-13} \text{ (J)}$	(1)	2
	(candidates who do not multiply by 2 can score MP1)		
	Frankland a seleviter		
	$E = mc^2$		
	$E = 2 \times 9.1 \times 10^{-31} \mathrm{kg} \times (3 \times 10^8 \mathrm{m s^{-1}})^2$		
	$E = 1.64 \times 10^{-13} \mathrm{J}$		
6(0)(ii)	Divide by 1.6×10^{-13} to convert I to MeV	(1)	
0(0)(11)	Divide by 2	(1)	
	Rest mass = $5.1 \times 10^{-1} (\text{MeV/c}^2)$ ecf <i>E</i> from (i)	(1)	3
	(for MP1&2 ignore any additional use of c^2)		
	If candidates omit the factor 2 in (i) and the factor 2 in (ii) they can score 2		
	marks for (ii)		
	It candidates do a new calculation for a single electron, they score max 2 as they have not used their minimum energy from (i)		
	they have not used then minimum energy from (1)		
	Example of calculation		
	$E = (1.64 \times 10^{-15} \text{ J})/(1.6 \times 10^{-15} \text{ C}) = 1.02 \text{ MeV}$ Divide by 2 to find energy for one particle $\rightarrow 5.1 \times 10^{-1} \text{ MeV}$		
	Rest mass = $5.1 \times 10^{-1} \text{ MeV/c}^2$		
	Total for Question 6		11

Question Number	Answer	Mark
7(a)	Most alpha particles passed straight through (the gold foil)Or most alpha particles were undeflected(1)	
	Some/few alpha particles were deflected/deviated/scattered (through small angles, indication of <90°) (1)	
	Very few were deflected through an angle greater that 90° Or <1% came straight back Or 1 in 8000 came straight back (1)	3
	(1)	3
7(b)	Use of $F = kQ_1Q_2/r^2$ (1)	
	Use of 2 and 79 (1)	
	$F = 18 \text{ N} \tag{1}$	3
	Example of calculation	
	$F = \frac{8.99 \times 10^9 \text{ N m}^2 \text{ C}^{-2} \times (2 \times 1.6 \times 10^{-19} \text{ C}) \times (79 \times 1.6 \times 10^{-19} \text{ C})}{(4.5 \times 10^{-14} \text{ m})^2} = 17.96 \text{ N}$	
	Total for question 7	6
	Revisionmades	

Question Number	Answer	Mark
8 (a)	See energy = QV Or $W=QV$ Or $E=QV$ Or $F=EQ$ and $E=V/d$ (1)	
	Equate QV and $\frac{1}{2}mv^2$	
	Or equate QV and $\frac{p^2}{2m}$ (1)	2
*8(b)	(QWC – Work must be clear and organised in a logical manner using technical wording where appropriate)	
	the (magnetic) field acts at a right angle to the direction of motion	
	Or the velocity of the ion is perpendicular to the (magnetic) field (1)	
	the force is perpendicular to the direction of motion. (1)	
	the force acts as a centripetal force	
	Or this is the condition for circular motion (1)	3
	27	
8(c)	See mass of ion = $80 \times 1.66 \times 10^{-27}$ (kg) in velocity/p calculation Or 1.328×10^{-25} (kg) in velocity/p calculation (1)	
	Use of $m/Q = 2V/v^2$ with $Q = (-) 1.6 \times 10^{-19}$ (C) (1)	
	Use of $BQv = \frac{mv^2}{r}$ Or use of $r = \frac{p}{BQ}$ and $p = mv$	
	(do not award this mark if speed of light is used) (1)	
	r = 0.47 m (1)	4
	Example of calculation $m/Q = 2V/v^2$ v = $\sqrt{(2VQ/m)}$	
	$2 \times 3000 \text{ V} \times 1.6 \times 10^{-19} \text{ C}$	
	$v = \sqrt{\frac{80 \times 1.66 \times 10^{-27} \text{kg}}{10^{-27} \text{kg}}}$	
	$v = 8.5 \times 10^4 (\text{ms}^{-1})$	
	$r = m_{\rm H}/RO$	
	$80 \times 1.66 \times 10^{-27} \text{kg} \times 8.5 \times 10^4 \text{m s}^{-1}$	
	r =	
	$r = 4.7 \times 10^{-1} \text{ m}$	
	Total for question 8	9

Question Number	Answer	Mark
9(a)	p is uud (1 n is udd (1 (If candidates have p and n correct but think neutrino or beta plus (e ⁺) (1 are composed of quarks, score 1 mark only) (1	1) 1) 2
9(b)	Identifies the charge of all four particles Or see $+1 \rightarrow 0 + (+1) + 0$ (assume charge written in same order as symbols in equation unless otherwise stated) (1)	1)
	Charge is conserved (1 (Only award MP2 if an attempt at MP1 has been made, e.g. candidate only identifies positive particles)	1) 2
	(Accept methods that use charge conservation of individual quarks of the proton and neutron. However, those who think the neutrino or beta plus (e^+) are composed of quarks can only score a max of 1 mark)	
9(c)	See $1.58 + 0.511 + 0.511$ Or 2.602 (MeV) (1)	1)
	Conversion of eV to J (multiply by 1.6×10^{-19}) (Ignore any use of c ² for this mark) (1	1)
	Use of E = hf and use of $\lambda = c/f$ Or use of $E = \frac{hc}{\lambda}$ (1)	1)
	$\lambda = 9.6 \times 10^{-13} \mathrm{m} \tag{1}$	1) 4
	(Use of $\frac{1}{2}mv^2$ to find v to use de Broglie equation scores 0/4)	
	Example of calculation total energy= $(1.022 + 1.58 \text{ J}) \times 1.6 \times 10^{-19} \text{ C} \times 1 \times 10^{6}$ = $4.16 \times 10^{-13} \text{ J}$ $\lambda = \frac{(6.63 \times 10^{-34} \text{ J} \text{ s} \times 3 \times 10^8 \text{ m} \text{ s}^{-1})}{(0.5 \times 4.16 \times 10^{-13} \text{ J})} = 9.56 \times 10^{-13} \text{ m}$	
	Ren	

9(d)(i)	Use of $p = E/c$ with value of $c = 3.0 \times 10^8 \text{ m s}^{-1}$ (p=1.067 × 10 ⁻¹⁷ kg m s ⁻¹) (do not penalise use of eV for <i>E</i>)	(1)	
	Use of $\lambda = h/p$ with their value for p	(1)	
	$\lambda = 6.2 \times 10^{-17} \text{ m}$	(1)	3
	(Candidates who substitute into $p=mv$ to find $v (>c)$ can score a maximum of 1 mark only)		
	Example of calculation		
	$\lambda = \frac{hc}{E} = \frac{6.63 \times 10^{-34} \text{J}\text{s} \times 3 \times 10^8 \text{m}\text{s}^{-1}}{20 \times 10^9 \text{J}\text{C}^{-1} \times 1.6 \times 10^{-19} \text{C}} = 6.2 \times 10^{-17} \text{m}$		

9(d)(ii)	Either			
	Idea that path of electrons may be deflected	(1)		
	Due to the (electrostatic) force between electrons and protons / quarks	(1)		
	Or			
	Diffraction	(1)		
	wavelength of electron is similar to diameter/gap for proton/quark	(1)	2	
	Total for question 9		13	

Revision