## Nuclear and Particle Physics QP2

| 1   | Early in the twentieth century physicists observed the scattering of alpha particles after they had passed through a thin gold foil. This scattering experiment provided evidence for the structure of the atom. |     |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | (a) State why it is necessary to remove the air from the apparatus that is used for this experiment.                                                                                                             | (1) |
|     | (b) From the results of such an experiment give <b>two</b> conclusions that can be deduced about the nucleus of an atom.                                                                                         | (2) |
| Coı | nclusion 1                                                                                                                                                                                                       |     |
| Coı | nclusion 2                                                                                                                                                                                                       |     |
|     | (c) The diagram shows three α-particles, all with the same kinetic energy. The path<br>followed by one of the particles is shown.                                                                                |     |
|     | Add to the diagram to show the paths followed by the other two particles.                                                                                                                                        | (3) |
|     | <ul> <li>→</li> <li>→</li> </ul>                                                                                                                                                                                 |     |
|     | • Nucleus                                                                                                                                                                                                        |     |

| 2    | of nuclei of anti-helium-4 which consists of anti-protons and anti-neutrons instead of protons and neutrons.                                                                                                                                                                                          |     |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|      | (a) 'Ordinary' helium-4 is written as <sup>4</sup> <sub>2</sub> He.                                                                                                                                                                                                                                   |     |
|      | What do the numbers 4 and 2 represent?                                                                                                                                                                                                                                                                | (2) |
|      |                                                                                                                                                                                                                                                                                                       |     |
|      | (b) In the RHIC experiment, nuclei of gold <sup>197</sup> <sub>79</sub> Au travelling at speeds greater than 2.99 × 10 <sup>8</sup> m s <sup>-1</sup> , in opposite directions, collided, releasing energies of up to 200 GeV. After billions of collisions, 18 anti-helium nuclei had been detected. |     |
|      | (i) What is meant by 'relativistic' in the collider's name?                                                                                                                                                                                                                                           | (1) |
|      |                                                                                                                                                                                                                                                                                                       |     |
|      | (ii) State why it is necessary to use very high energies in experiments such as these.                                                                                                                                                                                                                | (1) |
|      |                                                                                                                                                                                                                                                                                                       |     |
|      |                                                                                                                                                                                                                                                                                                       |     |
|      | (iii) Show that the mass of a stationary anti-helium nucleus is about 4 ${\rm GeV}/c^2$ .                                                                                                                                                                                                             | (4) |
|      |                                                                                                                                                                                                                                                                                                       |     |
|      |                                                                                                                                                                                                                                                                                                       |     |
|      |                                                                                                                                                                                                                                                                                                       |     |
|      |                                                                                                                                                                                                                                                                                                       |     |
| •••• |                                                                                                                                                                                                                                                                                                       |     |
|      |                                                                                                                                                                                                                                                                                                       |     |
|      |                                                                                                                                                                                                                                                                                                       |     |
|      |                                                                                                                                                                                                                                                                                                       |     |

| (iv) State why the small number of anti-helium nuclei produced only survive for a fraction of a second.                                                                                 | (1) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|                                                                                                                                                                                         |     |
| (v) A slow moving anti-helium nucleus meets a slow moving helium nucleus. If<br>they were to combine to produce 2 high energy gamma rays, calculate the<br>frequency of each gamma ray. | (2) |
|                                                                                                                                                                                         |     |
|                                                                                                                                                                                         |     |
|                                                                                                                                                                                         |     |
|                                                                                                                                                                                         |     |
| Frequency =                                                                                                                                                                             |     |
| (c) There are two families of hadrons, called baryons and mesons. Baryons such as protons are made of three quarks.                                                                     |     |
| (i) Describe the structure of a meson.                                                                                                                                                  |     |
|                                                                                                                                                                                         | (1) |
| ,0                                                                                                                                                                                      |     |
| 115                                                                                                                                                                                     |     |
|                                                                                                                                                                                         |     |
|                                                                                                                                                                                         |     |

| (ii) Up quarks have a charge of +2/3e and down quarks a charge of −1/3e. Describe the quark composition of anti-protons and anti-neutrons and use this to deduce the charge on each of these particles. |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|                                                                                                                                                                                                         | (4) |
|                                                                                                                                                                                                         |     |
|                                                                                                                                                                                                         |     |
|                                                                                                                                                                                                         |     |
|                                                                                                                                                                                                         |     |
| 60,                                                                                                                                                                                                     |     |
|                                                                                                                                                                                                         |     |
| Devision made simple                                                                                                                                                                                    |     |
| Ren                                                                                                                                                                                                     |     |

\*3 The diagram shows the basic structure of a linac.



Explain how the linac produces a beam of high speed particles, making reference to the alternating supply and the lengths of the tubes.

(4)

| 200 |
|-----|
|     |
| 40  |
|     |
|     |
|     |
|     |
|     |
|     |
|     |

| <b>4</b> (a) | was identified in a | -                                     | ing the interaction    | as predicted. Two yea<br>on of a proton and a l<br>on the name |                 |
|--------------|---------------------|---------------------------------------|------------------------|----------------------------------------------------------------|-----------------|
|              | The interaction, w  | hich conserves stra                   | ngeness, was           |                                                                |                 |
|              |                     | K-                                    | $+ p = \Omega + K^+ +$ | $K^0$                                                          |                 |
|              | (i) Deduce with re  | easons the charge o                   | n the $\Omega$ and who | ether it is a baryon o                                         | or a meson.     |
|              |                     |                                       |                        | ~                                                              |                 |
|              |                     |                                       |                        | (0)                                                            |                 |
|              |                     | rmation given in the ticles involved. | e table below de       | educe the quark com                                            | position of (4) |
|              |                     | Type of quark                         | Charge/e               | Strangeness                                                    |                 |
|              |                     | u                                     | +2/3                   | 0                                                              |                 |
|              |                     | d                                     | -1/3                   | 0                                                              |                 |
|              |                     | s                                     | -1/3                   | -1                                                             |                 |
|              |                     | :0                                    |                        |                                                                |                 |
|              | QQ                  |                                       |                        |                                                                |                 |

|                           | $p + p \rightarrow p + 7\pi^{+} + 7\pi^{-} + K^{+} + M^{-}$ | 1                       |
|---------------------------|-------------------------------------------------------------|-------------------------|
| mass of p                 | $= 938 \text{ MeV/}c^2$                                     |                         |
| mass of $\pi^+$ and       | $\pi^- = 140 \text{ MeV/c}^2$                               |                         |
| mass of K <sup>+</sup>    | $=494 \text{ MeV/}c^2$                                      |                         |
| mass of $\Lambda$         | $= 1115 \text{ MeV/c}^2$                                    |                         |
| (i) Calculate t to occur. | ne minimum kinetic energy of each proton, in                |                         |
|                           |                                                             | (3)                     |
|                           |                                                             |                         |
|                           |                                                             |                         |
|                           |                                                             | C                       |
|                           |                                                             | 2,:                     |
|                           |                                                             |                         |
|                           |                                                             |                         |
|                           | ~S)'                                                        |                         |
|                           |                                                             |                         |
|                           | _%                                                          |                         |
|                           |                                                             |                         |
|                           |                                                             |                         |
|                           |                                                             |                         |
|                           | Minimum kineti                                              | c energy =              |
| (ii) This intera          | ction would <b>not</b> have taken place if one of the       |                         |
|                           | and the other had twice the calculated value of             |                         |
| Explain wh                |                                                             |                         |
| Zapium wi                 | <i>y</i> .                                                  | (2)                     |
|                           |                                                             |                         |
|                           |                                                             |                         |
|                           |                                                             |                         |
|                           |                                                             |                         |
|                           |                                                             |                         |
|                           |                                                             |                         |
|                           | (Total f                                                    | or Question = 11 marks) |

(b) In another experiment, involving a head-on collision between two protons, the

following interaction was observed.

.

5 The table gives the quark structure of three particles.

The up quark has a charge of +2/3e and the down quark has a charge of -1/3e.

| Particle     | Quarks |
|--------------|--------|
| neutron n    | udd    |
| pion $\pi^-$ | dū⊤    |
| delta ∆⁻     | ddd    |

| (a) Show that udd is a possible combination of quarks for the neutron.                                                     |       |
|----------------------------------------------------------------------------------------------------------------------------|-------|
| \Q.                                                                                                                        | (1)   |
|                                                                                                                            |       |
|                                                                                                                            |       |
| (b) State, in terms of quark structure, why the $\Delta$ is classed as a baryon and the $\pi^-$ a meson                    | on.   |
|                                                                                                                            | (2)   |
|                                                                                                                            |       |
|                                                                                                                            |       |
| (c) Another particle in the delta family, the $\Delta^{++}$ , is also composed of up and/or down qualits decay is shown by | ırks. |
| $\Delta^{\scriptscriptstyle ++}  	o  \mathrm{p}  +  \pi$                                                                   |       |
| Deduce the quark content of the $\Delta^{++}$ and the charge on the pion.                                                  |       |
|                                                                                                                            | (2)   |
| Quark content of $\Delta^{++}$                                                                                             |       |
| Quark content of A                                                                                                         |       |
| Charge on pion                                                                                                             |       |
|                                                                                                                            |       |

(Total for Question = 5 marks)

| 0 | is an underground particle accelerator. The circumference of the tunnel is 27 km.                                                            |     |
|---|----------------------------------------------------------------------------------------------------------------------------------------------|-----|
|   |                                                                                                                                              |     |
|   |                                                                                                                                              |     |
|   |                                                                                                                                              |     |
|   |                                                                                                                                              |     |
|   |                                                                                                                                              |     |
|   |                                                                                                                                              |     |
|   |                                                                                                                                              |     |
|   | *(a) In the LHC, a magnetic field allows charged particles to move at a constant speed in a horizontal circular path of the required radius. |     |
|   | By reference to the force acting on the charged particles, explain how this is achieved.                                                     |     |
|   | Les,                                                                                                                                         | (4) |
|   |                                                                                                                                              |     |
|   |                                                                                                                                              |     |
|   |                                                                                                                                              |     |
|   |                                                                                                                                              |     |
|   | Q <sup>C</sup>                                                                                                                               |     |
|   |                                                                                                                                              |     |
|   |                                                                                                                                              |     |
|   |                                                                                                                                              |     |
|   |                                                                                                                                              |     |
|   |                                                                                                                                              |     |
|   |                                                                                                                                              |     |
|   |                                                                                                                                              |     |

|         | omentum gradually increases.  Attention and explain how the magnetic field in the LHC must change as the momentum |                    |
|---------|-------------------------------------------------------------------------------------------------------------------|--------------------|
|         | the particles increases.                                                                                          |                    |
|         |                                                                                                                   | (2)                |
|         |                                                                                                                   |                    |
|         |                                                                                                                   |                    |
|         |                                                                                                                   |                    |
|         |                                                                                                                   |                    |
|         |                                                                                                                   |                    |
| (c) (i) | Collisions between particles in high-energy physics experiments often result in                                   |                    |
|         | the production of an electron-positron pair.                                                                      |                    |
|         | Calculate the minimum energy, in joules, required to produce an electron-positron pair.                           | l                  |
|         | pan.                                                                                                              | (2)                |
|         |                                                                                                                   |                    |
|         |                                                                                                                   |                    |
|         |                                                                                                                   |                    |
|         |                                                                                                                   |                    |
|         | Minimum energy =                                                                                                  | J                  |
|         |                                                                                                                   |                    |
| (ii)    | By converting your minimum energy into MeV, give the rest mass of the electron in $MeV/c^2$ .                     |                    |
|         | III IVIC V/C.                                                                                                     | (3)                |
|         |                                                                                                                   |                    |
|         |                                                                                                                   |                    |
|         | *                                                                                                                 |                    |
|         |                                                                                                                   |                    |
|         | Rest mass of electron =                                                                                           | MeV/c <sup>2</sup> |
|         | (Total for Question = 11 marks                                                                                    | s)                 |

| evidence for the nuclear model of the atom. Alpha particles were fired at a thin gold foil and their paths observed.    |                                                  |
|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| (a) Describe the observations from the alpha particle s                                                                 | scattering experiment.                           |
|                                                                                                                         | (3)                                              |
|                                                                                                                         |                                                  |
|                                                                                                                         |                                                  |
|                                                                                                                         |                                                  |
|                                                                                                                         |                                                  |
|                                                                                                                         |                                                  |
|                                                                                                                         |                                                  |
|                                                                                                                         | <del>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</del> |
| (b) An alpha particle approaches a gold nucleus. It re<br>from the gold nucleus. Calculate the force betwee<br>nucleus. |                                                  |
| proton number for gold = 79                                                                                             | (3)                                              |
| (2)                                                                                                                     |                                                  |
|                                                                                                                         |                                                  |
| 2                                                                                                                       |                                                  |
|                                                                                                                         |                                                  |
|                                                                                                                         |                                                  |
|                                                                                                                         |                                                  |
|                                                                                                                         | Force =                                          |
|                                                                                                                         | (Total for Question = 6 marks)                   |
|                                                                                                                         | (                                                |

7 Between 1909 and 1911 Rutherford's alpha particle scattering experiment provided

8 A mass spectrometer is a device used to identify atoms by measuring the mass-charge ratio  $\frac{m}{O}$  of their ions.

Ionised atoms in a vacuum are accelerated from rest through a potential difference V and then enter an evacuated tube.



(a) An ion of mass m is accelerated to a velocity v. Show that the mass-charge ratio of the ion is given by

$$\frac{m}{Q} = \frac{2V}{v^2}$$

| *(b) The electromagnet shown in the diagram provides a magne deflect the ion along the tube of the spectrometer.                                                                          | etic field which is used to |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Explain how a magnetic field can be used to deflect the ion                                                                                                                               | n into a circular path.     |
|                                                                                                                                                                                           |                             |
|                                                                                                                                                                                           |                             |
|                                                                                                                                                                                           |                             |
|                                                                                                                                                                                           |                             |
|                                                                                                                                                                                           | Ø.                          |
| (c) An atom of bromine is ionised by the removal of one electror through a potential difference of 3.0 kV and then enters the deflected by a magnetic field of magnetic flux density 0.15 | e tube. The ionised atom is |
| Calculate the radius of curvature $r$ of the tube.                                                                                                                                        |                             |
| mass of bromine ion = 80 u                                                                                                                                                                | (4)                         |
| -01/5                                                                                                                                                                                     |                             |
| Q <sup>o</sup>                                                                                                                                                                            |                             |
|                                                                                                                                                                                           |                             |
|                                                                                                                                                                                           |                             |
|                                                                                                                                                                                           |                             |
|                                                                                                                                                                                           |                             |
|                                                                                                                                                                                           | v —                         |

| 9 | The | equation | for | $\beta_{+}$ | decay | is |
|---|-----|----------|-----|-------------|-------|----|
|---|-----|----------|-----|-------------|-------|----|

$$p \rightarrow n + e^+ + v_e$$

(a) Using information in the table, describe how a proton changes into a neutron.

|                           | Type of quark             | Charge / e                 |          |
|---------------------------|---------------------------|----------------------------|----------|
|                           | u                         | +2/3                       |          |
|                           | d                         | -1/3                       |          |
|                           |                           |                            | (2)      |
|                           |                           |                            |          |
|                           |                           | 601                        |          |
|                           |                           | 10.                        |          |
| (b) With reference to the | charges of the particles, | show that this decay is po | essible. |
|                           |                           | S                          | (2)      |
|                           | 20                        | <i></i>                    |          |
|                           |                           |                            |          |
|                           | 10                        |                            |          |
|                           | 5                         |                            |          |

| Calculate the wavelength of the emitted photons.                                                                                          |              |
|-------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| mass of stationary electron = $0.511 \text{ MeV/c}^2$<br>mass of stationary positron = $0.511 \text{ MeV/c}^2$                            |              |
|                                                                                                                                           | (4)          |
|                                                                                                                                           |              |
|                                                                                                                                           |              |
|                                                                                                                                           |              |
|                                                                                                                                           |              |
|                                                                                                                                           | · C:         |
|                                                                                                                                           |              |
|                                                                                                                                           |              |
|                                                                                                                                           |              |
|                                                                                                                                           | W 1 d        |
|                                                                                                                                           | Wavelength = |
| Linear accelerators (linacs) can produce electrons with                                                                                   |              |
| (i) Calculate the de Broglie wavelength associated with At these energies, the energy and momentum of a prelativistic equation $E = pc$ . |              |
| relativistic equation $E = pc$ .                                                                                                          | (3)          |
|                                                                                                                                           |              |
|                                                                                                                                           |              |
|                                                                                                                                           |              |
|                                                                                                                                           |              |
|                                                                                                                                           |              |
|                                                                                                                                           |              |
|                                                                                                                                           |              |

|       | (ii) | Experiments have been carried out where these 20 GeV electrons are aimed at a hydrogen target which consists of protons. Suggest, with reasons, what happens to the path of the electrons.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
|-------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (2) |
|       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| ••••• |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|       |      | (Total for Question = 13 marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s)  |
|       |      | (Ivanor Question — Ivanor (Ivanor Question — Ivanor (Ivanor Question — Ivanor (Ivanor ) — |     |
|       |      | isioin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |