## Radiation MS1

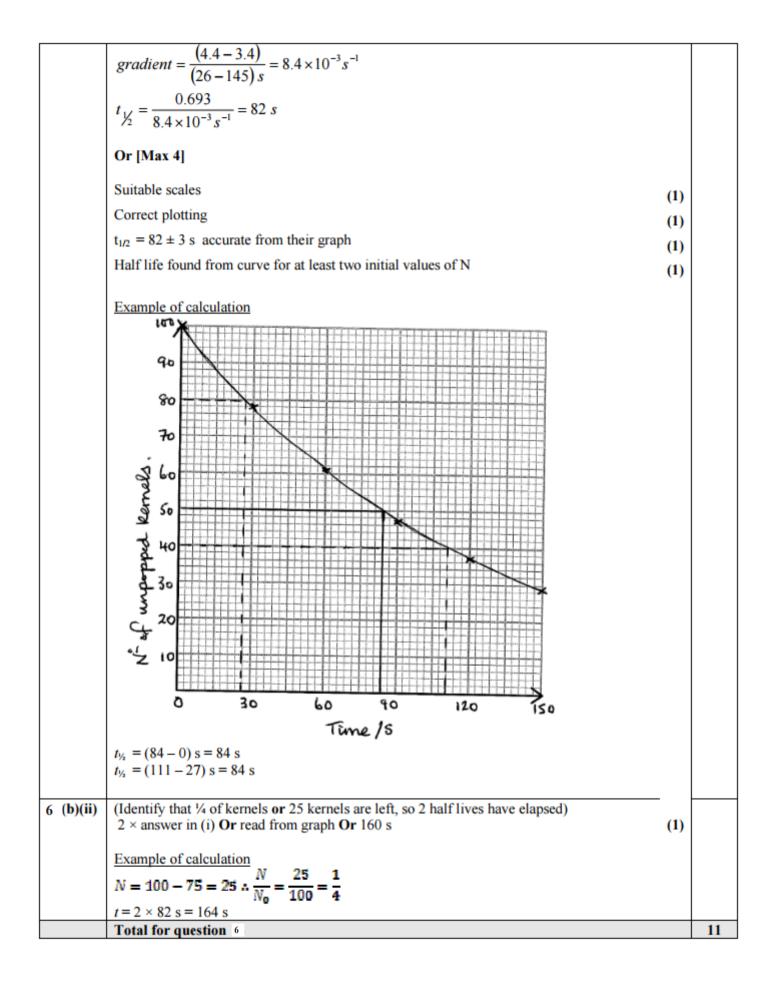
| Question<br>Number | Answer                                                                                                                                         |            | Mark |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|
| 1(a)               | $\beta$ -particles can (easily) penetrate the body/skin                                                                                        | (1)        |      |
|                    | Since they are not very ionising OR reference to what will stop them                                                                           | (1)        | (2)  |
| 1(b)(i)            | Use idea that number of unstable atoms halves every 8 days OR that 24 days represents 3 half-lives                                             | (1)        | (2)  |
|                    | Correct answer                                                                                                                                 | (1)        |      |
|                    | Example calculation:                                                                                                                           |            |      |
|                    | $N_0 \rightarrow \frac{N_0}{2} \rightarrow \frac{N_0}{4} \rightarrow \frac{N_0}{8}$                                                            |            |      |
|                    | $t = 0$ $t = t_{\frac{1}{2}}$ $t = 2t_{\frac{1}{2}}$ $t = 3t_{\frac{1}{2}}$                                                                    |            |      |
|                    | Fraction decayed = 100% - 12.5% = 87.5%                                                                                                        |            |      |
| 1(b)(ii)           | Use of $\lambda T_{1/2} = \ln 2$                                                                                                               | (1)        |      |
|                    | Use of an appropriate decay equation<br>Correct answer                                                                                         | (1)<br>(1) | (3)  |
|                    | Example of calculation:                                                                                                                        |            | (3)  |
|                    | Correct answer<br>Example of calculation:<br>$\lambda = \frac{\ln 2}{T_{\frac{1}{2}}} = \frac{0.693}{8 \text{ day}} = 0.0866 \text{ day}^{-1}$ |            |      |
|                    | $1.50 \mathrm{MBq} = \mathrm{A}_0 \mathrm{e}^{-0.0866 \mathrm{day}^{-1} \times 1\mathrm{day}}$                                                 |            |      |
|                    | $A_0 = 1.50 \mathrm{MBq} \mathrm{e}^{0.0866} = 1.64 \mathrm{MBq}$                                                                              |            |      |
|                    | Total for question 1                                                                                                                           |            | (7)  |
|                    | ens                                                                                                                                            |            |      |

| Question<br>Number | Answer                                                                                                                     |     | Mark |
|--------------------|----------------------------------------------------------------------------------------------------------------------------|-----|------|
| 2(a)               | Alpha-radiation only has a range of a few cm in air / cannot penetrate walls of container / skin                           | (1) | (1)  |
| 2(b)(i)            | Top line: ${}^{241}Am {}^{237}Np {}^{4}\alpha$                                                                             | (1) |      |
|                    | Bottom line: $_{95}Am_{93}Np_2\alpha$                                                                                      | (1) | (2)  |
| 2(b)(ii)           | Attempt at calculation of mass defect                                                                                      | (1) |      |
|                    | Use of $(\Delta)E=c^2(\Delta)m$ OR use of 1 u = 931.5 MeV                                                                  | (1) |      |
|                    | Correct answer [5.65 MeV; accept 5.6 - 5.7 MeV]                                                                            | (1) |      |
|                    | Example of calculation: $\Delta m = 241.056822 \text{ u} - 237.048166 \text{ u} - 4.002603 \text{ u} = 0.006053 \text{ u}$ |     | (3)  |
|                    | $\Delta m = 0.006053u \times 1.66 \times 10^{-27} \text{ kg u}^{-1} = 1.005 \times 10^{-29} \text{ kg}$                    |     |      |
|                    | E = $1.005 \times 10^{-29} \text{ kg} \times (3 \times 10^8 \text{ ms}^{-1})^2 = 9.04 \times 10^{-13} \text{ J}$           |     |      |
|                    | $E = \frac{9.04 \times 10^{-13} \text{ J}}{1.6 \times 10^{-13} \text{ MeV J}^{-1}} = 5.65 \text{ MeV}$                     |     |      |
| 2(c)               | Reference to half-life and typical lifespan                                                                                | (1) | (1)  |
|                    | Total for question 2                                                                                                       |     | (7)  |

evilision for the second secon

| Question | Answer                                                                     | Mark  |
|----------|----------------------------------------------------------------------------|-------|
| Number   |                                                                            |       |
| 3(a)*    | (QWC – Work must be clear and organised in a logical manner using          |       |
|          | technical wording where appropriate)                                       |       |
|          |                                                                            |       |
|          | Appropriate reference to the following:                                    |       |
|          | <ul> <li>The penetrating power of beta radiation</li> </ul>                |       |
|          | <ul> <li>The ionising effects of the beta radiation</li> </ul>             |       |
|          | <ul> <li>The shielding effect that the cylinder might have had</li> </ul>  | max 3 |
|          | <ul> <li>The constant activity over the 5 day period</li> </ul>            |       |
|          | Examples of responses:                                                     |       |
|          | Beta radiation is (moderately) ionising                                    |       |
|          | Beta radiation is able to penetrate the body                               |       |
|          | Once inside the body beta radiation may damage / kill / mutate / alter     |       |
|          | DNA of cells                                                               |       |
|          | Beta radiation is absorbed by a few mm of aluminium                        |       |
|          | Cylinder may have reduced the radiation to safe levels / absorbed the      |       |
|          | beta radiation                                                             |       |
|          | Greater risk of exposure if cylinder damaged or cracked                    |       |
|          | Grouter fisk of exposure if eyinder dunlaged of erdened                    |       |
|          | Long half life means that:                                                 |       |
|          | source stays active for a long time/activity unlikely to lower over 5 days |       |
| 3(b)     | 137 D 0                                                                    |       |
|          | Top line: <sup>137</sup> Ba <sup>0</sup> $\beta^-$ (1)                     |       |
|          | Bottom line: ${}_{56}Ba_{-1}\beta^-$ (1)                                   | 2     |
| 3(c)(i)  | Cannot identify which atom/nucleus/particle will be the next to decay      |       |
|          |                                                                            |       |
|          | OR cannot say when a given atom/nucleus/particle will decay                |       |
|          | OR cannot state exactly how many atoms/nuclei/particles will decay in a    |       |
|          | set time                                                                   |       |
|          |                                                                            |       |
|          | OR can only estimate the fraction of the total number that will decay in   | 1     |
|          | the next time interval (1)                                                 |       |

| 3(c)(ii) | Use of $\lambda T_{1/2} = \ln 2$<br>Decay constant, $\lambda = 7.3 \times 10^{-10} (s^{-1})$                                                                                                         | (1)<br>(1)                                        | 2  |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----|
|          | Example of calculation                                                                                                                                                                               |                                                   |    |
|          | $\lambda = \frac{\log_{e} 2}{T_{\frac{1}{2}}} = \frac{0.693}{30 \times 365 \times 24 \times 3600 \mathrm{s}} = 7.32 \times 10^{-10} \mathrm{s}^{-1}$                                                 |                                                   |    |
| 3(d)     | Use of $\frac{dN}{dt} = \left(\frac{dN}{dt}\right)_0 e^{-\lambda t}$                                                                                                                                 | (1)                                               |    |
|          | activity = $3.3 \times 10^{13}$ Bq [ $3.3 \times 10^{13}$ Bq if show that value used]<br>Use of $dN/dt = \lambda N$                                                                                  | (1)<br>(1)                                        | 4  |
|          | $N = 4.5 \times 10^{22} [4.8 \times 10^{22} \text{ if show that value used}]$<br>OR                                                                                                                  | (1)                                               | •  |
|          | Use of $dN/dt = \lambda N_o$<br>$N_o = 7.1 \times 10^{22} [N_o = 7.4 \times 10^{22} \text{ if show that value used}]$                                                                                | <ul> <li>(1)</li> <li>(1)</li> <li>(1)</li> </ul> |    |
|          | Use of $N = N_0 e^{-\lambda t}$<br>$N = 4.5 \times 10^{22} [4.8 \times 10^{22} \text{ if show that value used}]$<br>Example of calculation                                                           | <ol> <li>(1)</li> <li>(1)</li> </ol>              |    |
|          | $\frac{dN}{dt} = \left(\frac{dN}{dt}\right)_{0} e^{-\lambda t} = 5.2 \times 10^{13} \text{ Bq} \times e^{-7.32 \times 10^{-10} \text{ s}^{-1} \times 20 \times 365 \times 24 \times 3600 \text{ s}}$ |                                                   |    |
|          | $= 3.28 \times 10^{13} \text{ Bq}$                                                                                                                                                                   |                                                   |    |
|          | $N = \frac{dN/dt}{\lambda} = \frac{3.28 \times 10^{13} \text{ s}^{-1}}{7.32 \times 10^{-10} \text{ s}^{-1}} = 4.48 \times 10^{22}$                                                                   |                                                   |    |
| 3(e)(i)  | $^{95}_{37}Rb + 4 \times ^{1}_{0}n$                                                                                                                                                                  | (1)                                               | 1  |
| 3(e)(ii) | Idea that at least one neutron needs to be available to be absorbed for a chain reaction to be sustained                                                                                             | (1)                                               |    |
|          | Appreciation of the need to control/limit/restrict the number of neutrons (which can go on to produce another fission)                                                                               | (1)                                               | 2  |
|          | Total for question 3                                                                                                                                                                                 |                                                   | 12 |


| Question<br>Number | Answer                                                                                                                                                                                                                                                                                                                                                                                                                  |                | Mark |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------|
| 4 (a)(i)           | Use of $\frac{1}{2} m < c^2 > = 3/2 \text{ kT}$                                                                                                                                                                                                                                                                                                                                                                         | 1)<br>1)<br>1) | 3    |
| '(a)(ii)           | $^{235}_{92}U + ^{1}_{0}n \rightarrow ^{236}_{92}U \rightarrow ^{138}_{55}Cs + ^{96}_{37}Rb + 2 \times ^{1}_{0}n$                                                                                                                                                                                                                                                                                                       |                |      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                         | 1)<br>1)       | 2    |
| '(a)(iii)          | Use of $\Delta E = c^2 \Delta m$ OR use of 1 u = 931.5 MeV<br>Use of fission rate = power output                                                                                                                                                                                                                                                                                                                        | 1)<br>1)<br>1) | 4    |
|                    | Example of calculation                                                                                                                                                                                                                                                                                                                                                                                                  | 1)             |      |
|                    | $\Delta m = (235.0439 - 137.9110 \cdot 95.9343 - 1.0087) \text{ u}$<br>$\Delta m = 0.1899 \times 1.66 \times 10^{-27} \text{ kg} = 3.15 \times 10^{-28} \text{ kg}$<br>$\Delta E = (3 \times 10^8 \text{ m s}^{-1})^2 \times 3.15 \times 10^{-28} \text{ kg} = 2.84 \times 10^{-11} \text{ J}$<br>Fission rate = $\frac{2.5 \times 10^9 \text{ W}}{2.84 \times 10^{-11} \text{ J}} = 8.8 \times 10^{19} \text{ s}^{-1}$ |                |      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                         |                |      |

| <sup>;</sup> (b)(i)  | (QWC- Work must be clear and organised in a logical manner using technical wording where appropriate.)                                                                                                                                                                                                                                                                                                                    |                                               |          |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------|
|                      | <ul> <li>Max THREE from first 5 marking points</li> <li>Very high temperatures (&gt;10<sup>7</sup> K)needed</li> <li>To overcome electrostatic repulsion / forces</li> <li><u>Nuclei</u> come close enough to fuse / for strong (nuclear) force to act</li> <li>Very high densities needed</li> <li>(Together with high nuclei speeds) this gives a sufficient collision rate</li> </ul>                                  | (1)<br>(1)<br>(1)<br>(1)<br>(1)               |          |
|                      | <ul> <li>(Very high) temperatures lead to confinement problems</li> <li>Contact with container causes temperature to fall (and fusion to cease)</li> </ul>                                                                                                                                                                                                                                                                | (1)<br>(1)                                    | Max<br>4 |
| <sup>-</sup> (b)(ii) | ${}^{2}_{1}D + {}^{2}_{1}D \rightarrow {}^{3}_{1}H + {}^{1}_{1}X$<br>X is a proton [accept hydrogen nucleus]                                                                                                                                                                                                                                                                                                              | (1)                                           | 1        |
| '(b)(iii)            | <ul> <li>Any TWO from</li> <li>(Hydrogen) fuel for fusion is (virtually) unlimited whereas fission relies upon (uranium) a relatively limited resource</li> <li>Fusion results in few radioactive products, but radioactive products produced in fission present significant disposal problems</li> <li>For a given mass of fuel, the energy released by fusion is greater than the energy released by fission</li> </ul> | <ul><li>(1)</li><li>(1)</li><li>(1)</li></ul> | Max      |
|                      | Total for question 1                                                                                                                                                                                                                                                                                                                                                                                                      |                                               | 2<br>15  |

for question 1

| Question<br>Number | Answer                                                                                                                                                                                          |            | Mark |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|
| 5 (a)              | A radioactive isotope has an unstable nucleus                                                                                                                                                   | (1)        |      |
|                    | (Which decays and) emits radiation $\mathbf{Or} \alpha/\beta/\gamma$ (radiation) specified                                                                                                      | (1)        | 2    |
| 5 (b)              | Max 2                                                                                                                                                                                           |            |      |
|                    | We can't know when an individual nucleus will decay<br>We can't know which nucleus will decay next                                                                                              | (1)<br>(1) |      |
|                    | (In a given time interval) each nucleus has a fixed probability of decay <b>Or</b>                                                                                                              |            |      |
|                    | (In a given time interval) a fixed fraction of nuclei undergo decay                                                                                                                             | (1)        | 2    |
|                    | [accept atom for nucleus, but there is a one mark penalty for using particle, molecule or isotope]                                                                                              |            |      |
| 5 (c)              | Identify half life = $5730$ years                                                                                                                                                               | (1)        |      |
|                    | Use of $\lambda = \frac{\ln 2}{t_{1/2}}$                                                                                                                                                        | (1)        |      |
|                    | $l_{1/2}$ Decay constant = $1.21 \times 10^{-4} (yr^{-1})$ [3.84 × 10 <sup>-12</sup> (s <sup>-1</sup> )]<br>N/N <sub>0</sub> =0.60                                                              | (1)        |      |
|                    | <i>N/N</i> <sub>0</sub> =0.60                                                                                                                                                                   | (1)        |      |
|                    | Use of $N = N_0 e^{-\lambda t}$                                                                                                                                                                 | (1)        |      |
|                    | Use of $N = N_0 e$<br>Age = 4220 yr [1.34 × 10 <sup>11</sup> s]<br>Example of calculation                                                                                                       | (1)        | 6    |
|                    | Example of calculation                                                                                                                                                                          |            |      |
|                    |                                                                                                                                                                                                 |            |      |
|                    | $\lambda = \frac{\ln 2}{t_{1/2}} = \frac{0.693}{5730} = 1.21 \times 10^{-4} \mathrm{yr}^{-1}$ $\frac{N}{N_0} = 0.6 = e^{-1.21 \times 10^{-4} t}$ $\therefore \ln(0.6) = -1.21 \times 10^{-4} t$ |            |      |
|                    | $\therefore \ln(0.6) = -1.21 \times 10^{-4} t$                                                                                                                                                  |            |      |
|                    | $\therefore t = \frac{\ln(0.6)}{-1.21 \times 10^{-4}} = 4220 \text{ yr}$                                                                                                                        |            |      |
| 5(d)               | Ratio of C-14 to C-12 (in living material) was greater in the past                                                                                                                              | (1)        |      |
|                    | Appreciation that we are not comparing 'like with like' e.g. ratio used is from current matter                                                                                                  | (1)        |      |
|                    | (Hence) the age of Stonehenge has been underestimated                                                                                                                                           | (1)        | 3    |
|                    | Total for question 5                                                                                                                                                                            |            | 13   |

| Question<br>Number | Answer                                                                                                                                                                                                                                                              |     | Mark |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|
| 6 (a)              | Max 4 with at least ONE similarity and ONE difference<br>Similarities:                                                                                                                                                                                              |     |      |
|                    | <ul> <li>Radioactive decay and corn popping are both random events</li> <li>Or the time at which any given nucleus will decay and any kernel will pop cannot be predicted</li> <li>Or can't tell which nucleus will decay nor which kernel will pop next</li> </ul> | (1) |      |
|                    | <ul> <li>(With a large number) the rate of decay / popping for both depends upon the number<br/>of unchanged nuclei / kernels</li> </ul>                                                                                                                            | (1) |      |
|                    | Both have a decreasing rate of decay                                                                                                                                                                                                                                | (1) |      |
|                    | • The rate of decay / popping depends upon the type of nucleus                                                                                                                                                                                                      | (1) |      |
|                    | (isotope) / size of kernel                                                                                                                                                                                                                                          | (1) |      |
|                    | <ul> <li>Radioactive decay is an irreversible change, as is corn popping</li> </ul>                                                                                                                                                                                 | (1) |      |
|                    | Differences:                                                                                                                                                                                                                                                        | (-) |      |
|                    | <ul> <li>Not all the kernels are identical, whereas (for a given isotope) all the nuclei are<br/>identical</li> </ul>                                                                                                                                               | (1) |      |
|                    | <ul> <li>Popping of corn depends on external factors and radioactive decay does not.<br/>(examples such as heating acceptable)</li> </ul>                                                                                                                           | (1) |      |
|                    | <ul> <li>The kernels do not emit standard fragments when they decay whereas radioactive nuclei emit radiation.</li> </ul>                                                                                                                                           | (1) | 4    |
| 6 (b)(i)           | Log graph drawn                                                                                                                                                                                                                                                     | (1) |      |
|                    | Suitable scales [not starting from 0 on y-axis]                                                                                                                                                                                                                     | (1) |      |
|                    | Correct plotting of 6 points                                                                                                                                                                                                                                        | (1) |      |
|                    | Valid attempt at gradient calculation                                                                                                                                                                                                                               | (1) |      |
|                    | Use of $t_{1/2} = \ln 2/\text{gradient}$                                                                                                                                                                                                                            | (1) |      |
|                    | $t_{1/2} = 82 \pm 3 s$                                                                                                                                                                                                                                              | (1) | 6    |
|                    | Example of Calculation                                                                                                                                                                                                                                              |     |      |
|                    | $\begin{array}{c} 4.8 \\ 4.4 \\ 4.4 \\ 4.4 \\ 4.4 \\ 4.2 \\ 3.8 \\ 3.6 \\ 3.4 \\ 3.2 \\ 3.0 \\ 0 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 5$                                                                                                                          |     |      |



| Question<br>Number | Answer                                                                                                                                                    |            | Mark |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|
| 7(a)               | Similarity: Same number of protons Or same magnitude of charge Or both have 1 proton                                                                      | (1)        |      |
|                    | <b>Difference:</b> Different number of neutrons / nucleons <b>Or</b> different mass <b>Or</b> D has 1 neutrons and T has 2 neutrons                       | (1)        | 2    |
| 7(b)               | Use of $P = \frac{\Delta E}{\Delta t}$ (do not penalise a power of ten error)                                                                             | (1)        |      |
|                    | Energy = $7.5 \times 10^6$ (J)                                                                                                                            | (1)        | 2    |
|                    | $\frac{\text{Example of calculation}}{E = 500 \times 10^{12} \text{ W} \times 15 \times 10^{-9} \text{ s} = 7.5 \times 10^{6} \text{ J}$                  |            |      |
| 7(c)(i)            | ${}^{2}_{1}\mathbf{D} + {}^{3}_{1}\mathbf{T} \rightarrow {}^{4}_{2}\mathbf{H}\mathbf{e} + {}^{1}_{0}\mathbf{n}$                                           |            |      |
|                    | Top line         2         3         4         1                                                                                                          | (1)        |      |
|                    | Bottom line     1     1     2     0                                                                                                                       | (1)        | 2    |
| 7(c)(ii)           | Attempt at calculation of mass difference<br>Energy released = 17.5 (MeV) [17.5 must be clearly identified as an energy]                                  | (1)<br>(1) | 2    |
|                    | $\frac{\text{Example of calculation}}{\Delta m = (1875.6 + 2808.9 - 3727.4 - 939.6) \text{ MeV/c}^2 = 17.5 \text{ MeV/c}^2}{\Delta E = 17.5 \text{ MeV}}$ |            |      |
| 7(c)(iii)          | Conversion of energy to consistent units<br>Number of nuclei = $3 \times 10^{18}$                                                                         | (1)<br>(1) | 2    |
|                    | Example of calculation                                                                                                                                    |            |      |
|                    | In each fusion $\Delta E = 17.5 \times 10^6 \text{ eV} \times 1.6 \times 10^{-19} \text{ J eV}^{-1} = 2.8 \times 10^{-12} \text{ J}$                      |            |      |
|                    | $\therefore N = \frac{7.5 \times 10^6 \text{ J}}{2.8 \times 10^{-12} \text{ J}} = 2.68 \times 10^{18}$                                                    |            |      |
|                    | Energy MJ (b) Energy MeV (c)(ii) $N \times 10^{18}$                                                                                                       |            |      |
|                    | 7.5         17.5         2.7           7.5         20         2.3                                                                                         |            |      |
|                    | 8 17.5 2.9                                                                                                                                                |            |      |
|                    | 8 20 2.5                                                                                                                                                  |            |      |
|                    |                                                                                                                                                           |            |      |

| 7 (c)(iv)    | Application of momentum conservation<br>Deduction that $V_N = 4 V_{\alpha}$ [ $v_N = 3.967 v_{\alpha}$ ]                                                    | (1)<br>(1)               |    |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----|
|              | Use of $E_{\mathbb{R}} = \frac{1}{2}mv^{2}$ (ratio as shown or sum = 17.5 MeV)                                                                              | (1)                      |    |
|              | Energy = 14 MeV (ecf (c)(ii), 14.1 MeV, if $v_N$ = 3.967 $v_\alpha$ 16 MeV if 20 MeV used)                                                                  | (1)                      |    |
|              | Or<br>Application of momentum conservation<br>Use of $E_k = p^2/2m$<br>Deduction that $E_N = 4 E_{\alpha}$<br>Energy = 14 MeV                               | (1)<br>(1)<br>(1)<br>(1) | 4  |
|              | Example of calculation (1 <sup>st</sup> method)<br>$m_N V_N = m_{\alpha} V_{\alpha}$<br>$V_N = \frac{m_{\alpha}}{m_N} \times V_{\alpha} = 4V_{\alpha}$      |                          |    |
|              | $\frac{E_{\rm N}}{E_{\rm q}} = \frac{\frac{1}{2}m_{\rm N}V_{\rm N}^2}{\frac{1}{2}m_{\rm q}V_{\rm q}^2} = \frac{1}{4} \times \left(\frac{4}{1}\right)^2 = 4$ |                          |    |
|              | $\therefore E_{\rm N} = \frac{4}{5} \times 17.5 \mathrm{MeV} = 14 \mathrm{MeV}$                                                                             |                          |    |
|              | Example of calculation (2 <sup>nd</sup> method)<br>$p_{\alpha} = p_{N}$                                                                                     |                          |    |
|              | $p_{\alpha}^2 = p_{\rm N}^2$                                                                                                                                |                          |    |
|              | $E_a \times 2m_a = E_N \times 2m_N$                                                                                                                         |                          |    |
|              | $\therefore E_{\alpha} = E_{\rm N} \times \frac{m_{\rm N}}{m_{\alpha}} = \frac{E_{\rm N}}{4}$                                                               |                          |    |
|              | Also, $E_a + E_N = 17.5 \text{ MeV}$                                                                                                                        |                          |    |
|              | $\therefore \frac{E_{\rm N}}{4} + E_{\rm N} = 17.5 {\rm MeV}$                                                                                               |                          |    |
|              | $\therefore E_{\rm N} = \frac{4}{5} \times 17.5 \text{ MeV} = 14 \text{ MeV}$                                                                               |                          |    |
| 7 <b>(d)</b> | Max 3<br>A heavy nucleus absorbs a neutron. [accepts "collides with" / "fired into" for                                                                     |                          |    |
|              | "absorbs"]                                                                                                                                                  | (1)                      |    |
|              | The <b>nucleus</b> becomes unstable <b>and</b> splits into two (roughly equal sized) fragments [accept "decays" / "breaks up" for "splits"]                 | (1)                      |    |
|              | Idea that a few neutrons are also emitted in the fission process                                                                                            | (1)                      |    |
|              | These neutrons cause further fissions <b>Or</b> these neutrons cause a chain reaction                                                                       | (1)                      | 3  |
|              | (if atom is used instead of nucleus only penalise once)                                                                                                     |                          |    |
|              | Total for question 7                                                                                                                                        |                          | 17 |