Radiation MS2

Question	Answer		Mark
Number			
1(a)	Use of $\lambda = \ln 2/t_{1/2}$	(1)	
	$\lambda = 1.22 \times 10^{-4} (\text{yr}^{-1})$ [$\lambda = 3.86 \times 10^{-12} (\text{s}^{-1}), \lambda = 2.31 \times 10^{-10} (\text{min}^{-1})$]	(1)	
	Use of $A = A_0 e^{-\lambda t}$	(1)	
	$t = 950 \text{ (yr)}$ [if $\lambda = 1.2 \times 10^{-4}$, then $t = 960 \text{ (yr)}$]	(1)	4
	[credit answers that use a constant ratio method to find the number of half lives elapsed]		
	Example of calculation		
	$\lambda = \frac{0.693}{5700 \mathrm{yr}} = 1.22 \times 10^{-4} \mathrm{yr}^{-1}$		
	$14.7 \mathrm{s}^{-1} = 16.5 \mathrm{s}^{-1} \times \mathrm{e}^{-1.22 \times 10^{-4} \mathrm{yr}^{-1} \times t}$		
	$t = \frac{\ln\left(\frac{14.7 \mathrm{s}^{-1}}{16.5 \mathrm{s}^{-1}}\right)}{-1.22 \times 10^{-4} \mathrm{yr}^{-1}} = 947 \mathrm{yr}$		
1 (b)	Initial value of count rate should be bigger than 16.5 min ⁻¹		
	Or greater count rate from living wood in the past [e.g. A/A_0 smaller]		
	Or initial value of count rate underestimated in the calculation		
	Or Initial number of undecayed atoms greater [e.g. N/N_0 smaller]	(1)	
	Age of sample has been underestimated		
	Or ship is older than 950 yr		
	Or sample has been decaying for a longer time	(1)	2
	[If a calculation has been carried out to show that a greater value of initial activity leads to a greater age, then award both marks]		
	Total for question 1		6

Question Number	Answer		Mark
2 (a)(i)	\mathbf{N} \mathbf{N} \mathbf{N} \mathbf{N} \mathbf{N}		
	$N + \alpha \rightarrow {}_{8}O + {}_{1}p$		
	All values correct	(1)	1
2(a)(ii)	In nuclear fission a chain reaction can be set up Or in a chain reaction the (total) energy released can be very large		
	Or heavier/larger nuclei release much more energy		
	Or a very high reaction rate releases much more energy	(1)	1
2 (b)	Attempt at mass deficit calculation Use of $4E = c^2 4m$ (Allow use of $1 \mu = 1.66 \times 10^{27} \text{ kg}$)	(1)	
	Use of 1 MeV = 1.6×10^{-13} J (Allow use of 1 u = 1.00×10^{-10} kg) (Allow use of 1 u = 931.5 MeV/c^2)	(1)	
	$\Delta E = 174 \text{ MeV}$	(1)	4
	Example of calculation		
	$\Delta m = (390.29989 - 233.99404 - 152.64708 - (2 \times 1.67493)) \times 10^{-27} \text{ kg}$		
	$\Delta m = 3.0891 \times 10^{-28} \mathrm{kg}$		
	$\Delta E = (3.00 \times 10^8 \mathrm{m s^{-1}})^2 \times 3.0891 \times 10^{-28} \mathrm{kg} = 2.780 \times 10^{-11} \mathrm{J}$		
	$\Delta E = \frac{2.780 \times 10^{-11} \text{J}}{10^{-11} \text{J}} = 173.8 \text{MeV}$		
	$1.60 \times 10^{-13} \mathrm{J}\mathrm{MeV}^{-1}$		
2 (c)(i)	Same number of protons[do not accept atomic/proton number],Different numbers of neutrons[do not accept mass/nucleon/neutron number]	(1) (1)	2
2 (a)(ii)	Correct calculation for ω [see 6283 or 2000 π or 60.000 x 2 π]	(1)	
2(0)(11)	$\frac{60}{60}$	(1)	
	$a = (-) 5.9 \times 10^{\circ} \text{ m s}^{-2}$	(1)	2
	Example of calculation		
	$(60000 \times 2\pi)^2$ 15 10-2 5.02 106 -2		
	$a = -\left(\frac{1}{60 \text{ s}}\right) \times 15 \times 10^{-2} \text{ m} = 5.92 \times 10^{-6} \text{ ms}^{-2}$		
2(c)(iii)	Max 2 Stiff/stiffness	(1)	
	Strong/strength Low density	(1)	2
		(1)	_
2(d)	Use of $\Delta E = mc\Delta\theta$ Rate at which energy is removed = 3.1×10^9 (W)	(1) (1)	
	Use of the efficiency equation [must have 2.2×10^9 (W) on top line] Efficiency = 42% [accept 0.42]	(1) (1)	4
	Example of calculation	/	
	$\Delta E = 70000 \text{ kg} \times 3990 \text{ J kg}^{-1} \text{ K}^{-1} \times 11 \text{ K} = 3.07 \times 10^9 \text{ J}$		
	% efficiency = $\frac{\text{useful power output}}{\text{total power input}} \times 100 = \frac{2.2 \times 10^{7} \text{ W}}{(2.2 + 2.1) \times 10^{9} \text{ W}} \times 100 = 41.5\%$		
	$(2.2 + 5.1) \times 10$ w		
	Total for question 2		16

Question Number	Answer		Mark
3 (a)(i)	Use of $\lambda t_{1/2} = \ln 2$	(1)	
	$\lambda = 5.8 \times 10^{-8} (s^{-1})$	(1)	
	Use of $\frac{\Delta N}{\Delta t} = -\lambda N$	(1)	
	$\frac{\Delta N}{M} = (-)1.5 \times 10^8 \text{Bg}$ [accept s ⁻¹ Or counts s ⁻¹]		
	Δt	(1)	4
	Example of calculation		
	$\lambda = \frac{0.693}{(138 \times 24 \times 3600)s} = 5.81 \times 10^{-8} s^{-1}$		
	$\frac{\Delta N}{\Delta t} = -5.81 \times 10^{-8} \mathrm{s}^{-1} \times 2.54 \times 10^{15} = -1.48 \times 10^{8} \mathrm{Bq}$		
3(a)(ii)	Use of $N = N_0 e^{-\lambda t}$	(1)	
	Fraction of nuclei remaining $= 0.90$	(1)	
	10% of nuclei have decayed [accept 0.1 Or 1/10]	(1)	3
	Example of calculation		
	$t = 21 \times 24 \times 3600 \text{ s} = 1\ 814\ 400 \text{ s}$		
	$\frac{N}{N} = e^{-5.81 \times 10^{-8} s^{-1} \times 1.81 \times 10^{6} s}$		
	$\frac{N}{N} = e^{-0.105} = 0.900$		
	Fraction decayed = $1 - 0.9 = 0.1$		
3(b)	Idea that α -particles are not able to penetrate the (dead layer of) skin	(1)	
	(from outside the body)		
	Damage/danger if energy is transferred to cells/DNA	(1)	2
3(c)(i)	OF damage/danger to cells/DNA due to ionisation $210 \text{ p} = 206 \text{ p} \text{ J} = 4$	(1)	4
3 (C)(I)	$^{210}_{84}Po \rightarrow ^{200}_{82}Pb + ^{4}_{2}\alpha$		
	Top line correct	(1)	
		(1)	2
2 () (")	Bottom line correct	(1)	1
3 (c)(11)	So that momentum is conserved	(1)	1
3 (d)	Spontaneous means that the decay cannot be influenced by any external factors.	(1)	
	Random means that we cannot identify which atom/nucleus will (be the		
	next to) decay		
	Or we cannot identify when an individual atom/nucleus will decay Or we cannot state exactly how many atoms/nuclei will decay in a set		
	time	(1)	
	Or we can only estimate the fraction of the total number that will decay		2
	in the next time interval		

	Total for question 3	(1)	16
	long time	(1)	2
	Idea that the half life is long enough for the activity to be detectable for a		
	deposited in the surroundings)	(1)	
3 (e)	Idea that traces of the isotope will be excreted from the body (and		

Question Number	Answer		Mark
4 (a)	A radioactive atom has an unstable nucleus	(1)	
	which emits α , β , or γ radiation [at least one of $\alpha \beta \gamma$ named]	(1)	2
4(b)	$C \rightarrow {}^{11}_5 B + {}^0_1 e^+ + v_e$		
	Top line correct	(1)	-
	Bottom line correct	(1)	2
4(c)	Attempt at mass diference calculation	(1)	
	Attempt at conversion from (M)eV to J	(1)	
	$\Delta E = 1.4 \times 10^{-13} \text{ (J)}$	(1)	3
	Example of coloriary		
	Example of calculation: $AE = 10.252.6 = 10252.2 \ 0.5 = 0.880 \ MeV$		
	$\Delta E = 10\ 253.0 - 10252.2 - 0.5 = 0.889 \text{ MeV}$		
4(4)	$\Delta E = 0.869$ MeV $\times 1.0 \times 10^{-1}$ J MeV $= 1.42 \times 10^{-1}$ J		
4(u)	(because carbon-11 has a relatively short half-life)	(1)	
		(1)	
	β particles are not very ionising Or positrons are not very ionising Or		
	boron is safe in small amounts	(1)	2
4(e)	Use of $\lambda t_{1/2} = \ln 2$	(1)	
	$(\lambda = 5.68 \times 10^{-4} \text{ s}^{-1})$		
	Use of $A = A_0 e^{-\lambda t}$		
	Use $A = 1.58 \times 10^6$ Bg in $A = 4 e^{-\lambda t}$	(1)	
	$0.5c A = 1.36 \times 10^{-7} Dc$	(1)	4
	$A_0 = 1.2 \times 10 \text{ Bq}$	(1)	-
	Example of calculation:		
	$\lambda = \frac{0.693}{5.68 \times 10^{-4} \text{ s}^{-1}}$		
	$1220 \mathrm{s}^{-1220 \mathrm{s}^{-10}}$		
	$1.58 \times 10^{6} \text{ Bq} = A_{0} e^{-5.68 \times 10^{-4} \text{ s}^{-1} \times 60 \times 60 \text{ s}}$		
	$A_0 = 1.22 \times 10^7 \text{ Bq}$		
	Total for question 4		13

Question Number	Answer	Mark
5 (a)	QWC – Work must be clear and organised in a logical manner using	
	technical wording where appropriate	
	(Nuclear fission is) the splitting of a large nucleus into smaller nuclei (1)	
	The mass of the (fission) fragments is less than the mass of the original nucleus (1)	
	indefeus (1)	
	Reference to $\Delta E = c^2 \Delta m$	
	Or the binding energy <u>per nucleon</u> is greater in the fragments than in the	
	original nucleus (1)	3
(b)	ΔN (1)	
	Use of $\frac{\Delta t}{\Delta t} = -\lambda N$	
	$\frac{\Delta N}{\Delta t} = 1.6 \times 10^8 \mathrm{Bq} \tag{1}$	2
	Example of calculation	
	$\frac{\Delta N}{\Delta t} = -\lambda N = 1.3 \times 10^{-5} \mathrm{s}^{-1} \times 1.2 \times 10^{13} = 1.56 \times 10^8 \mathrm{Bq}$	
(c)	Material must have a high density (1)	
	Concrete (1)	2
(d)	Idea that fission reactors produce more radioactive waste (1)	
	Fuel for fission is a limited resource, whereas fuel for fusion is (virtually)	2
	(accept specific examples uranium, hydrogen and deuterium)	
	(do not accept "renewable"/"non-renewable" for "limited"/"unlimited")	
	Total for Question 16	9

Question Number	Answer		Mark
6 (a)(i)	Can't say when a nucleus will decay Or which nucleus will decay next	(1)	1
(a)(ii)	Cannot influence when a nucleus will decay	(1)	1
(b)(i)	Top line correct Bottom line correct $^{210}Po \rightarrow_{82}Pb +_{2}\alpha$	(1) (1)	2
(b)(ii)	Use of $\frac{1}{2}mv^2$ $v = 1.6 \times 10^7 \text{ (m s}^{-1}\text{)}$ <u>Example of calculation</u> $\frac{1}{2}mv^2 = 8.5 \times 10^{-13} \text{ J}$ $v = \sqrt{\frac{2 \times 8.5 \times 10^{-13} \text{ J}}{6.64 \times 10^{-27} \text{ kg}}} = 1.60 \times 10^7 \text{ m s}^{-1}$	(1) (1)	2
(b)(iii)(1)	momentum is conserved Or total momentum is constant Polonium/Final /initial momentum is zero	(1) (1)	2
(b)(iii)(2)	Use of $m_{Pb}v_{Pb} = m_{\alpha}v_{\alpha}$ $v_{Pb} = 3.9 \times 10^5 \text{ m s}^{-1}$ (use of $v_{\alpha} = 1.6 \times 10^7$ gives $v_{Pb} = 3.1 \times 10^5 \text{ m s}^{-1}$ scores both marks) <u>Example of calculation</u> $v_{Pb} = \frac{m_{\alpha}}{m_{-1}} \times v_{Pb} = \frac{4 \text{ u}}{206 \text{ u}} \times 2 \times 10^7 \text{ m s}^{-1} = 3.88 \times 10^5 \text{ m s}^{-1}$	(1) (1)	2

(b)(iv)	Although the alpha has a smaller mass it has a bigger velocity/speed	(1)	
	And velocity/speed is squared in the energy expression	(1)	
	Or		
	Both particles have the same momentum	(1)	
	$E_k = p^2/2m$ so alpha has more energy, since it has a smaller mass	(1)	2
(c)(i)	Use of $P = E \times \frac{\Delta N}{\Delta T}$	(1)	
	Δt $P = 69 (W)$	(1)	2
	Example of calculation		
	$P = E \times \frac{\Delta N}{\Delta t} = 8.5 \times 10^{-13} \mathrm{J} \times 8.1 \times 10^{13} \mathrm{s}^{-1} = 68.9 \mathrm{W}$		
. (c)(ii)	Use of $t_{1/2} = \frac{\ln 2}{\lambda}$	(1)	
	$t_{1/2} = 139 \text{ days}$	(1)	
	links (short) half life to activity/ power (dependent mark)	(1)	
	Or use exponential equation to find activity/power after at least one year Decay constant and time in complementary units The idea that the activity/power is too small (dependent mark)	(1) (1) (1)	3
	Example of calculation $t_{1/2} = \frac{\ln 2}{\lambda} = \frac{0.693}{5.0 \times 10^{-3} \text{ day}^{-1}} = 138.6 \text{ day}$		
	Total for Question 18		17