SHM MS1

Question Number	Answer		Mark
1 (a)	(Net force) $(\Delta)F=-k(\Delta)x$	(1)	
	Used with F=ma	(1)	(2)
(b)	Use of F=(-)kx	(1)	
q	Correct answer for k OR substitution of expression for k into formula below	(1)	
	Use of ω^2 =k/m OR $T=2\pi\sqrt{\frac{m}{k}}$ OR $a_{max}=-\omega^2A$, with a_{max} =9.81 Nkg ⁻¹	(1)	
	Use of ω =2 π f OR f=1/T	(1)	
	Correct answer for f	(1)	/ - \
	Example of calculation:		(5)
	$k = \frac{0.15 \text{kg} \times 9.81 \text{N kg}^{-1}}{0.2 \text{m}} = 7.4 \text{Nm}^{-1}$		
	$\omega = \sqrt{\frac{7.4 \mathrm{N} \mathrm{m}^{-1}}{0.15 \mathrm{kg}}} = 7.0 \left(\mathrm{rad} \mathrm{s}^{-1}\right)$		
	$f = \frac{\omega}{2\pi} = \frac{7 s^{-1}}{2\pi} = 1.1 Hz$		
	Total for question 11		(7)

Question Number	Answer		Mark
2(a)	Resonance	(1)	
2(-)	System driven at / near its <u>natural</u> frequency	(1)	(2)
(b)(i)	Any zero velocity point	(1)	(2)
(b)(ii)	Any maximum/minimum velocity point	(1)	(1)
(c)	Select 70 mm distance from passage/see 35 mm Use of a = $-\omega^2 x$ Use of v = ωA Correct answer	(1) (1) (1) (1)	(4)
(d)	The answer must be clear and be organised in a logical sequence		
QWC	The springs/dampers absorb energy (from the bridge)	(1)	
	(Because) the <u>springs</u> deform/oscillate with natural frequency of the bridge	(1)	
	Hence there is an efficient/maximum transfer of energy	(1)	
	Springs/dampers must not return energy to bridge / must dissipate the energy	(1)	(max 3)
	Total for question 18		(11)

Question Number	Answer		Mark
3 (a)(i)	Use of $f=1/T$	(1)	
	f = 8 Hz	(1)	2
	Example of calculation		
	$f = \frac{1}{T} = \frac{1}{2 \times 0.0625 s} = 8 Hz$		
(a)(ii)	At the equilibrium (position) / centre of the oscillation / mid-point	(1)	1
(a)(iii)	Use of v_{max} =2 π fA OR v_{max} = ω A	(1)	
	$v_{\text{max}} = 2.5 \text{ ms}^{-1} [\text{ecf for (a)(i), see table below}]$	(1)	2
	Example of calculation		
	$v = 2\pi f A = 2\pi \times 8 s^{-1} \times 5 \times 10^{-2} m = 2.5 m s^{-1}$		
(b)(i)	Idea that the system is forced / driven into oscillation at / near its <u>natural</u>		
	frequency	(1)	
	OR driver / forcing frequency is equal / near to <u>natural</u> frequency	(1)	
	Leads to large/max energy transfer OR large/max/increasing amplitude ((1)	2
(b)(ii)	Max 2		
		(1)	
		(1)	
		(1)	max 2
		(1)	
	Total for question 16		9

When marking 16(a)(iii) the table below may be helpful:

f/Hz	A/cm	v/ms ⁻¹	Marks
8	5	2.5	2
16	5	5	2
8	10	5	1
16	10	10	1

Question Number	Answer		Mark
4(a)	 Force (or acceleration): (directly) proportional to displacement always acting towards the equilibrium position 	(1) (1)	2
(b)	Use of $\omega = 2\pi f$ OR $\omega = 2\pi/T$ Use of $v = A\omega \sin \omega t$ OR $v = A\omega$ $v = 0.35 \text{ m s}^{-1}$ [If 5 cm or 10 cm is substituted instead of 2.5 cm then still award second mark] $\frac{\text{Example of calculation}}{\omega = 2\pi \text{ rad} \times \left(\frac{10}{4.5 \text{ s}}\right) = 14.0 \text{ rad s}^{-1}$ $v = 2.5 \times 10^{-2} \text{ m} \times 14.0 \text{ s}^{-1} = 0.35 \text{ m s}^{-1}$	(1) (1) (1)	3
(c)	 Any THREE from Node at fixed end or antinode at free end Distance from node to antinode = λ/4 As (vibrating) length increases, wavelength increases Reference to v = f λ The shorter the ruler the higher the frequency 	(1) (1) (1) (1) (1)	Max 3
	Total for question 15		8

Question Number	Answer		Mark
5(a)	Acceleration is: • (directly) proportional to displacement from equilibrium position • (always) acting towards the equilibrium position Or idea that acceleration is in the opposite direction to displacement [accept undisplaced point/fixed point/central point for equilibrium position]	(1) (1)	
	Or		
	 Force is: (directly) proportional to displacement from equilibrium position (always) acting towards the equilibrium position Or idea that force is a restoring force e.g. "in the opposite direction" [accept towards undisplaced point/fixed point/central point for equilibrium position] 	(1)(1)	2
	[An equation with symbols defined correctly is a valid response for both marks. e.g $a \propto -x$ or $F \propto -x$]		
(b)(i)	Amplitude = 2.3 m [allow ±0.1 m] Time period = 24 hours [allow ±0.5 hour]	(1) (1)	2
	[24 hours = 86 400 s] Example of calculation Amplitude = $(6.1 \text{ m} - 1.5 \text{ m})/2 = 2.3 \text{ m}$		
(b)(ii)	Period = $(48 \text{ hr} - 0 \text{ hr})/2 = 24 \text{ hr}$ Use of $\omega = \frac{2\pi}{T}$	(1)	
	Use of $v = (-)A\omega\sin\omega t$ [$v_{\text{max}} = \omega A$] $v_{\text{max}} = 0.60 \text{ m hr}^{-1}$	(1) (1)	
	Example of calculation: $\omega = \frac{2\pi}{T} = \frac{2\pi \text{ rad}}{24 \text{ hr}} = 0.262 \text{ rad hr}^{-1}$ $v_{\text{max}} = 0.262 \text{ rad hr}^{-1} \times 2.3 \text{ m} = 0.602 \text{ m hr}^{-1}$		
	Or		
	Attempt to calculate gradient with a max $\Delta t = 12$ hours, and max $\Delta x = 6$ m Rate of change of depth in range $(0.54 - 0.66)$ m hr ⁻¹ Rate of change of depth in range $(0.57 - 0.63)$ m hr ⁻¹	(1) (1) (1)	3
	Example of calculation Rate of change of depth = $\frac{(6.5-1.0)}{(11.0-1.5)}$ = 0.57		
(b)(iii)	Graph with correct shape [minus sine curve, at least 30 hours] Same time period as graph given, constant amplitude	(1) (1)	2
	Total for question 13		9

Question	Answer		Mark
Number			
6(a)(i)	Resonance	(1)	1
(a)(ii)	The vibrations from the engine/road surface/wheels must drive/force the tiger's		
	head (to vibrate)	(1)	
	at a frequency equal/close to its natural frequency	(1)	
	Or		
	Driver/forcing frequency	(1)	
	Matches natural frequency	(1)	2
(b)(i)	2π	(1)	
	Use of $\omega = \frac{\Delta u}{T}$		
	Use of $a_{max} = \omega^2 A$	(1)	
	Amplitude = 2×10^{-2} m	(1)	3
	Example of calculation 2π		
	$\omega = \frac{2\pi}{0.8 s} = 7.85 (rad) s^{-1}$ 1.2 ms ⁻²		
	$A = \frac{1.2 ms^{-2}}{(7.85 s^{-1})^2} = 1.95 \times 10^{-2} m$		
(b)(ii)	Correct shape and phase (in antiphase with acceleration) for graph	(1)	
	Amplitude (ecf from (b)(i)) and a time marked on axes	(1)	2
	Total for question 17		8

Question Number	Answer	Mark
7(a)	Pendulum C has same/similar length as pendulum X (1)	
	Therefore Chestherenes/similar natural frameworks were deliver.	
	Therefore C has the same/similar <u>natural</u> frequency as pendulum X Or idea that C is driven at its <u>natural</u> frequency (1)	
	(a)	
	(Hence) the energy transfer from X to C is most efficient	
	Or	
	There is a maximum transfer of energy from X to C	
	Or A correct reference to resonance (1)	3
(b)	Any zero displacement point marked on original graph [do not insist on (1)	
	"P"] (Minus) cosine graph drawn with same period as original graph (1)	2
	(1)	2
	[Ignore amplitude of graph drawn]	
	Examples of graphs:	
	Displacement A	
	Time	
	This candidate has identified "P" (although not used "P") and the cosine	
	graph is well drawn. [2 marks]	
	/X /X	
	0 Time	
	This candidate has identified "P" correctly, and has drawn a minus cosine	
	graph. Their graph starts from a time of T/4, which is just about acceptable. [2 marks]	
	[2 marks]	
	Displacement	
	Time	
	This candidate has identified "P" correctly, but has drawn a sine curve. [1	
	mark]	
		-
	Total for question 13	5

Question	Answer		Mark
Number			
8(a)	(QWC – Work must be clear and organised in a logical manner using technical wording where appropriate)		
	(Hooke's Law:) for a spring, force is proportional to extension $\mathbf{Or} \ F = k \ \Delta x$	(1)	
	An extension of the spring causes a force towards the equilibrium position	(1)	
	Or (resultant force towards the equilibrium position, so) $ma = -k \Delta x$		
	Condition for shm is restoring force [acceleration] is proportional to displacement (from equilibrium position)	(1)	3
	[QWC question, so max 2 if equations given with no further explanation]		
(b)	Use of $a = -\omega^2 x$	(1)	
	Use of $T = \frac{2\pi}{\omega}$	(1)	
	T = 1.55 (s)	(1)	3
	[Credit use of F = k Δx and use of $T = 2\pi \sqrt{\frac{m}{k}}$ for first two marking		
	points]		
	Example of calculation:		
	$\omega = \sqrt{\frac{0.49 \mathrm{m s^{-2}}}{3.0 \times 10^{-2} \mathrm{m}}} = 4.04 \mathrm{s^{-1}}$		
	$T = \frac{2\pi}{4.04 \text{ s}^{-1}} = 1.55 \text{ s}$		
(c)(i)	Damped / damping [Do not accept critical/heavy damping]	(1)	1
(c)(ii)	Forced / driven	(1)	1
(c)(iii)	Resonance	(1)	
	f = 0.65 Hz [accept s ⁻¹] [0.625 Hz if show that value is used, 0.64 Hz if unrounded value used]	(1)	2
	Example of calculation: f = 1/1.55 s = 0.645 Hz		
	[allow 2nd mark if they use either their value from (b) or 1.6 s]		
(d)	(With a smaller mass baby) the natural frequency of oscillation would increase		
	Or The natural frequency of the system would increase		

Or The periodic time of the system would decrease (1)	
Smaller mass baby would have to kick at a higher frequency (to force system into resonance) [accept larger mass baby would have to kick at a lower frequency]	2
Total for question 18	12

· ·			3.6.1
Question Number	Answer		Mark
9(a)	Acceleration is: • (directly) proportional to displacement (from equilibrium position) • (always) acting towards the equilibrium position Or idea that acceleration is in the opposite direction to displacement	(1) (1)	
	[for equilibrium position accept: undisplaced point Or fixed point Or central point]		
	Or Force is: • (directly) proportional to displacement (from equilibrium position) • (always) acting towards the equilibrium position Or idea that force is a restoring force e.g. "in the opposite direction"	(1) (1)	2
	[for equilibrium position accept: undisplaced point Or fixed point Or central point]		
	[An equation with symbols defined correctly is valid for both marks. e.g. $a \propto -x$ or $F \propto -x$]		
(b)	Sinusoidal graph [shape not starting point is important]	(1)	
	at least 1.5 cycles [symmetrical, but tolerate a small decrease in amplitude]	(1)	
	T = 1.6 (s)	(1)	
	Amplitude marked as 10 (cm) Or A/B marked	(1)	4
	Example of calculation:		
	$T = \frac{1}{0.625 \text{ s}^{-1}} = 1.60 \text{ (s)}$		
	0 1.6 3.2 /t (/s)		
(c)	Use of $\omega = 2\pi f$	(1)	
	Use of $v_{\text{max}} = (\pm)\omega A$	(1)	
	$v = \pm 0.39 \text{ m s}^{-1}$	(1)	3
	Example of calculation: $\omega = 2\pi \times 0.625 = 3.93 \text{ s}^{-1}$		
	$v = 3.93 \text{ s}^{-1} \times 0.1 \text{ m} = 0.393 \text{ m/s}^{-1}$		